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» There is a 'true’ data generating process y = f(x) + ¢, from which we only see a
sample D = {(21,41),---, (zn,yn)}

» We learn a rule fp from that sample (that's the machine learning part)

> ... that hopefully generalizes to the entire ground truth distribution, i.e.:
fo(z) = f(z) for all z
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» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition

Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,z") >0 Non-Negativity
d(z,2) =0 <= z=4a Self-Identity
d(z,2) =d(z',z Symmetry
d(z,2') +d(«',2") > d(z,2") Triangular Inequality

> Idea: Use distances as interface to the data with key principle: Low distance
means similar prediction
» Note: Almost all algorithms implemented in scikit-learn.org
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» Not a smooth model, but 'approaching smoothness’ for enough data
> straightforward extension: average of k nearest neighbors
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N
fo(x) = Z k(x,x;)  a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

» For us, k is always the Gaussian or RBF kernel with hyper-parameter ¢ € R*:
1 d(z,2')?
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> As loss, we use the regularized squared error as for linear regression:
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Nearest Neighbor Classification
> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

3
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> Strong baseline in many classification problems (for a reasonable distance measure)

> straightforward extension: majority vote of k nearest neighbors

> possible extensions for metric learning (Weinberger and Saul 2009)
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» We impose the constraints: go(x;) > 1 —¢; if y; =2 and ga(z;) < —1+¢; if

y; = 1 for slack variables ¢;
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» Nicer form via Wolfe dual (PaaRen 2019; Boyd and Vandenberghe 2004):
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s.t. Zozi =0 and a; -y >0 Vi
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> problem is still convex, but constrained = new techniques needed, esp. quadratic
programming

> Extensions to multiple classes by means of one-versus-one classification
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Example: Constant Coding

» Idea: We compress every point to a constant: f(#) = ¢and f~1(¢) =
» What is the best constant ¢7 = Minimize reconstruction loss
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Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
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> More precisely: f(Z) =W - (7 — l;) and fL() =V -5+ b with parameters
W e R™*" V ¢ R"™™ and b € R”

» Derivation is, sadly, out of scope (refer to e.g. Bishop (2006) instead)

> Key points: b is the data mean; W are eigenvectors of the data covariance matrix
corresponding to the largest eigenvalues; V. = W7
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t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained
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3

over all j; symmetrize as p; j = ﬁ(pj‘i + pijj)
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> High-dimensional closeness of j to i: p;j; = exp (— 5 =232 ); normalize by sum

3

over all j; symmetrize as p; j = ﬁ(pj‘i + pijj)
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t-SNE (Van der Maaten and Hinton 2008)

>

| 4

Idea: Find low-dimensional points 41, ..., %N directly, such that closeness is
maintained

. . . . . 1d(zi@;)?N . :
High-dimensional closeness of j to i: pjj; = exp ( — 5= -2~ ); normalize by sum

3

over all j; symmetrize as p; j = ﬁ@j\i + pijj)

» Low-dimensional closeness: ¢; ; = 1/(1 + deuc(yi,yj)Q)

> Loss function: Kullback-Leibler divergence:

N N
k(s UN) = Zzpz}j -log (L)

(]
i=1 j=1 i

» Optimization via gradient descent/related methods

» Challenge: Extending map to new data points; refer e.g. to Gisbrecht, Schulz, and

Hammer (2015)
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PCA versus t-SNE example
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Notes on PCA versus t-SNE

Rules of thumb:

» PCA is very fast and easily applicable to new data; very useful e.g. as
pre-processing for big data
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Notes on PCA versus t-SNE

Rules of thumb:
» PCA is very fast and easily applicable to new data; very useful e.g. as
pre-processing for big data

» t-SNE is better suited for visualizations and insight; especially for clustered data

» Evaluating the quality of dimensionality reduction is difficult, refer e.g. to Mokbel
et al. (2013)
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Single-linkage clustering (Sibson 1973)

> |dea: Represent data points by a cluster index: f(z) € {1,...,L}
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Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
()
QHOHO‘O/
Fe
@)
OﬂQ/

» Provides not only clusters but a dendrogram / “evolutionary tree”

> Precise behavior depends on the definition of cluster closeness (Ward 1963)
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K-means C|ustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
Ee{l,...,K}
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K-means C|UStering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K} f (@) = @

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss
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» Simple and fast, but sensitive to initialization
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Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes
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https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml
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> |dea 1: Assign data points “softly” to multiple prototypes:
Vii = exp(—r’;\‘i)/ Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
] N S N
point: Wy = D i1y Vrji - Ti/ Dim1 Vkli
— Works solely based on pairwise distances; let D? be matrix of pairwise squared
. o N
distances and . = (Vg|1,-- - Vk|N)/ 2oim1 Vkli then:
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> Reference implementation:
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