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What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data that generalize to test data.

If you show me a data set of example inputs and outputs (z1,41), ..., (1, Ym ), machine
learning means to automatically find a function f, such that f(x;) ~ y; for all
examples and for new, unseen data (generalization).
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Example: (1,2),(3,4),(7,8). What is f7
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S N R O
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Which one is best? = Depends on what generalizes to new data
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Why bother with learning about ML?

» ML is a useful toolbox for many tasks (method field, similar to statistics)
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Why bother with learning about ML?

» ML is a useful toolbox for many tasks (method field, similar to statistics)

» ML is a hype in research (Crew, 2019), business, and society more broadly - and
it's good to know capabilities and limitations
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Learning objectives of this course

» Conceptual knowledge: Most important ML concepts and how they are related

» Operational knowledge: How to do ML (at least on a high level; or with
voluntary programming tasks)

> ML literacy: De-mystifying ML and gauging the capabilities of ML approaches
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Overview of ML

Artificial Intelligence

ca. 290.000 papers since 2015
ca. 630.000 papers since 2015
ca. 73.000 papers since 2015

ca. 300.000 papers since 2015

acc. to google scholar
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1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
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Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. "Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

3. "Modern” ML and neural networks: Neural network modules, recipes for neural
networks, adversarial attacks

4. Reinforcement learning and ethics

Unfortunately not covered: Bayesian ML, Graphical Models, Causality, random forests,

Note: One homework task for each session
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Let X and ) be sets (e.g. the set of all possible integers).

9/55



Functions

Definition: Function

Let X and ) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y € ), such that no z occurs in two tuples.

9/55



Functions

Definition: Function
Let X and ) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y € ), such that no z occurs in two tuples.

X y
1 1
2 2
3 3

9/55



Functions

Definition: Function

Let X and ) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y € ), such that no z occurs in two tuples.

9/55



Functions

Definition: Function

Let X and ) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y € ), such that no z occurs in two tuples.

X Yy :
. o We define f(x) as y such that
f{(1172):(253)7(5174)7"'} (z,y) € f.
\
2 \ 2
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Functions

Definition: Function

Let X and ) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y € ), such that no z occurs in two tuples.

X Yy :
) L We define f(z) as y such that
f=1(1,2),(2,3),(3,4),...} f(@)asy
(z,y) € [.
1 \ 1
2 2 Intuitively, a function is some
\ kind of machine or program
3 3 which returns a deterministic
\ output for some input.
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Definition: Learning algorithm

Let X and ) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a

dataset from X x ).
A learning algorithm A is a function that maps any data set D to a function

fp: X = ).
We also call the output fp = A(D) a model on D according to A.

> Intuitively, a learning algorithm estimates the relationship between the sets X' and
Y in form of a function.

» A good algorithm ensures that for all (z,y) € D, fp(x) =~ y.

» ... and that this holds for new data as well
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Learning Algorithms Illustration

The simplest possible baseline algorithm: Always return the mean of the outputs, i.e.:
.A(D) = fp with fp(z) = ﬁ . Z(%y)epy
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Loss function

Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).
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Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).
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» Most common example: Root mean square error (RMSE):
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10 |
8| trwse(D, 1) = 5 (32 + (=32 + () 1|
o f@) =% 21
=
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Illustration: RMSE

10

- lrmse(D, f) = \/%(02“‘02"‘02) =0
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Learning as Loss Minimization

» Most learning algorithms A are based on loss minimization, i.e.: A(D) is defined
as a model f that minimizes some loss ¢(D, f)

» In other words: We want to solve the opimization problem

i oD, f) (2)

> Different algorithms differ in loss, optimization strategy, and model class F

» Focus here mostly on model classes, but optimization strategies are a research field
of their own (PaaBen 2019)
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Example 2: Cosine Functions

1. Consider the model class F = { fg|fo(x) = 10 - cos(x - ) for some 6 € R}
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Challenges in optimization

» saddle points, sudden gradient shifts,
local optima, ...
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Challenges in optimization

» saddle points, sudden gradient shifts,
local optima, ...

» still problematic for better algorithms,
e.g. ADAM, conjugate gradient,
L-BFGS (Paalen 2019)

» So, when is optimization “nice’"?

= convex optimization

lrvse (D, fo)
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10
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Convex Optimization
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Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

v |

v

fo-z+(1-0) y) <a-L)+ (1 -a) )

Intuitive: Any line between two points on the
function graph is above the function graph

Equivalent: The gradient is below

Gradient descent finds global optima

Also equivalent: Second derivative is always
positive

Gradient descent is “smooth”

Pro tip: Design your loss to be convex

convex function
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Introduction

One-dimensional linear regression model class:

]T::{fhwfw($):: w - x, UJE}R}

Example: | wish to bake x vegan brownies.

My recipe is:
ingredient amount
Zucchini [g] 150 » How much of each ingredient do |
Flour [g] 60 -
need to buy for x portions?
Cocoa powder [g] 15
Sugar [g] 60 > for each ingredient, one linear model
Oil [ml] 15 with input x and coefficient w in table

For full recipe, refer to:

https://cakeinvasion.de/
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» Assume a function ¢ : X — R"” that maps inputs x to n-dimensional feature
vectors ¢(x)

» Model class of generalized linear regression:
Farr = {fal fa(w) = 0" - ¢(x), @€ R"}

where w1 - ¢(z) = wy - $1(x) + ...+ wy - ou(T)

> Example: You are the inputs and ¢ maps to your respective body height, pinky
finger length, and favourite color (n = 3).
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Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE( f)

> First trick: Rephrase the problem

min >~ (@ p(ai) — v;)*

cR»
v i—1

» Consider the gradient (1st derivative) and Hessian (2nd derivative):
N

vu’iz (wT Z 2. ¢ xz ) W — yz)

i=1

N
V?EZ( - (i) — i) —QZQNQ o(z;)T >0 = convex
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> Let's try to find such a point analytically!
al 2
Vi > (@ dla) —yi)” = 2 (@) (p(zi)" -0 —y;) =28 - " - —2® - i
i=1 i=1

where ® = (¢(m1), e ,qb(a:N)), 7= (y1,...,yn)T.
> 28 BT .t — 2B f=0 = 0= (B B)- B

» AGr(D) = fu-
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> Let's start with ¢(x) = =
61 = Does not work @
4l ° i > We need a constant term; so let's try
¢(z) = (1,2)"

2| o .
0 | | |
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Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that
minfef ERMSE(D,]:ne) < €.

Generalized Linear Regression is a universal approximator for surprisingly many ¢, e.g.:

polynoms sine/cosine waves Radial Basis Functions

1 [ T H 1 [ H 1 [T T ]

0.5 g 0o <4 0.5} s

0 4 —1F 3 0 |
0 0.5 1 0 0.5 1 0 0.5 1

28 /55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions.

29 /55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:
¢(Z) = (tanh(a@] - Z),...,tanh(@] - £)) for random (1) @,. .., un

29 /55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

20/55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data

20/55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data

> But lower n is more efficient and more interpretable

20/55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data

» But lower n is more efficient and more interpretable = homework task

20/55



Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data
» But lower n is more efficient and more interpretable = homework task

> Also, lower n is more robust to input noise
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Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").
T T - T I
——degree 1 —— train error
1 —— degree 3 || Ly —— test error ||
——degree 9
L
= 0 g
< 05p 3
—1
| | | | 0 | | | |
0 02 04 06 0.8 1 0 2 4 6 8
X n

= For high model complexity, model can fit the noise and does not generalize
(overfitting)
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Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

= Punish extreme parameter values (regularization)

£
N 2
. T ST =
. N s - .
min ;(w o) —yi) + X0 @
Val =2 ng)xl W —yi) + 2N B
Z—QZgb x;) T4 X-T = sitill convex
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Regularization (I1)
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2.0 0T G—D G+2-A-wW=0
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Summary

» Generalized linear regression is a powerful tool for prediction, especially with good
feature map ¢

» Already illustrates many typical challenges of ML: Underfitting, overfitting,
generalization, model architecture, feature processing, ...

> Success in practice depends on understanding data, features, optimization,
numerics, ...
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Generalization Redux

We expect generalization between these

data sets.
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Generalization Redux

We expect generalization between these But how about these?
data sets.
1| o &6e - 1F §oe o o o -
8 %o 8.0 ° ?
°
2! % & ®
> 0° ° : = of ° :
o °
(&)
\O ] © ® 9]
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= We only want to generalize only to datasets from the same data source
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Standard Data Generation Model

noise (randomly generated)

input (randomly generated)

l
z @ y=fla)+e

“true” unknown function (deterministic)

output

> Assumes that the data are identically and independently distributed (i.i.d.)

» z, ¢, and y are random variables
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Random Variables

» Intuitively, a random variable X is a variable
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Random Variables

v

Intuitively, a random variable X is a variable that can take a value z from a set
Qx with some probability px (z) € [0,1].

A\

We call the function px : Qx — R™ with fzeﬂx px(z)dz =1 a probability
density

> A probability distribution is a function Px that assigns probabilities to subsets
ACQx, ie P(X € A):= [ _,px(z)de.

> We often write p(z) or P(A) for short, if X is clear

» The precise definition is more complicated! Refer e.g. to Wikipedia
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N coins

» Consider N random variables X;, each representing a fair coin toss with

Q2 ={0,1} and px,(0) = px,(1) =

1
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» Then, consider the mean as a random variable, i.e. Y := % (X + .o+ X))
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The Gaussian density
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» Density:
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» 1 and o are parameters of the density called mean and standard deviation
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The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
» Density:
_ 1 1(z—p)?
o) = e (— 5 )
» 1 and o are parameters of the density called mean and standard deviation
> We often write p(z) = N (z|p, o) for short
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» We can choose p, and p. independently (based on our belief about the data)
» But y dependsonxz ande: y= f(x)+e¢

= We need a joint density p; (Z,7) = p(Z) - pe (g) - f(:i‘))

42 /55



Example: Joint Density

> x: Fair six-sided die; f(x) =2+ 1; y = f(z) +¢€

43 /55



Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢

> e pe(_l) = 4117176(0) = %7])6(1) = %

43 /55



Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = 4117176(0) = %7])6(1) = %

> px,y(i'ag) = pa:(i') 'pe(:l) - f(i'))

43 /55



Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iap€(0) = %7])6(1) = %
> pz,y(i'v Z)) = pw(j) 'pe(y - f(i'))

Pey 1 2 3 4 5 6 T 8

43 /55



Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iap€(0) = %7])6(1) = %
> pz,y(i'v Z)) = pw(j) 'pe(y - f(i'))

Pey 1 2 3 4 5 6 T 8
1

o=
=

43 /55



Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iap€(0) = %7])6(1) = %

> Poy(2,9) = pa(@) - pe(§ — f(2))
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1

1 1
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Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iape(o) = %ape(l) =1

4
> pz,y(i'v :l)) = p$(£') " Pe (Q - f(i.))
Dey 1 2 3 4 5 6
1 1
1 54 12 274 (1) 0 0
0 51 i3 34 0 0
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Marginal & Conditional Density

» Marginal Density: p,(Z) = degy Pa,y(Z,7)
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Marginal & Conditional Density

» Marginal Density: p,(Z) = Eyeﬂy Py (Z,7)
» Conditional Density: pyj,—3(9) = pzy(2,9)/pz(2) (often p(g|2) for short)
)) =

» we call  and y independent if p, (Z,9) = p2(Z) - py(y) for all Z,7

Example:
@ po(2) p(l2) plz) pBl2) p@lz) pGl2) p6l2) p(7l2) p(8|2)
1 1 1 1
L3 : 1 : 0 0 0 0 0
2 g 0 o % % 0 0 0 0
3% 0 0 o 3 : 0 0 0
4 g 0 0 0 o % 3 0 0
5% 0 0 0 0 o 3 : 0
6 5 0 0 0 0 0 o 3 3
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Construction

» Conceptually, we would start by specifying a full joint density and infer all
properties (marginal, conditional, independence) from that

> Practically, we start with independence assumptions, marginals, and conditionals
and infer the joint density from that: p, .(Z,9) = pyje—2(9) - P=(T)
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Probabilistic Regression
» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C
> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

= conditional: py,—;(9) = N (9|f(#),0) where f is the “true” underlying function
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Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max
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N
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Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max
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» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset
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Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v1),- .-,
» Find the function f that maximizes the likelihood of the dataset

max
fer

<— min

N
pr,y(xia yl)

Z

=1
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Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max pr,y(:vi, Yi)

<— min —
iy Z} vi)’

= Equivalent to RMSE minimization
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Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pfm:ﬁ(f)

fer
N ) 0_2
. T T
= nin ;1 (@ - p(wi) —yi)” + 2w W

= Equivalent to Regularized RMSE minimization

» Note: “Truly” Bayesian modelling would do an average across all models (Bishop

2006)
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Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set ). We call a learning
algorithm A probably approximatively correct with bounds 4,¢ € (0,1) on ps 4 if a
1 — 6 fraction of sufficiently large datasets D sampled from p, , yield a model

fp = A(D) such that

/X/y (f2(@) - 1’3)2 Pay(Z,9)didy < €

Proving PAC properties is one of the key objectives in Statistical Machine Learning
Theory (Shalev-Shwartz and Ben-David 2014).
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Bias-Variance decomposition

> Question: Why does regularization help for generalization?
> Let fp:=A(D) and let f(z) := [ fp(x) - pp(D)dD

» Consider for some (z,y) the average error a learned model will make.

/ (fp(x) —y)? - pp(D)dD = / (fp(x) = F(x) + f(z) —y)* - pp(D)dD
- / (Fp) — F(@))? poD)iD+  (f(z) - v)°

—_——

Bias / “Undercuriosity”

Variance / “Overcuriosity”

Regularization can strongly reduce variance while slightly increasing bias = better
generalization
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> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/ / / (f5(#) =9 'Px,y(i,@)dﬁ:dz))-pp(ﬁ)d@
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How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

> Get the best possible reference implementation for each baseline Ay, ..., Ax
» Collect multiple (!) data sets that represent your target domain well

> Approximate the generalization error for each algorithm on each data set using
crossvalidation

> Use K paired statistical tests to compare the errors of A with each A4,..., Ax
(e.g. Wilcoxon sign-rank test); use Bonferroni correction

> |f too few datasets: Use the errors in each crossvalidation fold
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Example: Reading a typical machine learning paper

‘Tree Edit Distance Learning via Adaptive Symbol Embeddings

Benjamin Paafien

Abstract

Metric learning has the aim to improse classifi-

Structures, abstract syntax irees of computer pro-
rams, or syntax trees of nawral kingusge, by
learning the cost function of an edit distance,
ie. the costs of replacing, deleting, or insert-
ing nodes in a tree. However, kaming such
s diely may yiedan edit disce which
violates metric axioms nter.
pret. and may not gev\tmllu ph iy
ribution, we propose a novel metric earming ap-
proach for trees which we call embedding edit
distance leaming (BEDL) and wl\lcl\ e 0
it ditame indicly by e
e B s
oo supports class discrimina-
tion. We leam such embeddings by reducing the

show bt BEDL mproves upon he st of e
antin metric learning for tre hmark
s sen, anging from compaer scenee aver
biomedical da 103 natural-language processing

ticularly apparent in case of the k-nearest neighbor clas-
sifier which classifies data points by assigning the label
o the mary of s & st eghbors acsonding o3
given distance (Cover & Hart, 1967): or in case of learning
Vecior quantation apecshs whichclasity dka s
by assigning the label of the closest prototype according
t0a given distance (Kohonen. 1995). The success of such
mchine eming spposces ines o e diane being
discriminative. hat i, data point from the same class be-
ing generallycloser comparedro das poins o diftret

. 1f the distance does not flfill this critrion, one
has to adapt or learn he distance measure with respect to
the data, which isthe topic of merric learning (Kulis, 2013;
Bellet et al., 2014).

Most prior research n metriclearning has focused on learn-
ing a generalization of the Euclidean distance according
to some cost function (Kulis, 2013; Bellett al., 2014)
Hovecr,the Encldan it st syl 0 00
vectoral data. such as protein sequences, abstract syntax
e of compute rograms. or o et of nawrl
language. To process these kinds of data, edit distances
are a popular option. in particular the tree edit distance
(Zhang & Shasha. 1989). In this contribution. e develop
a novel metric learning scheme for the tree edit distance
which we call embedding edit distance learning (BEDL).
While pist research on metric leaming for tres does exist
(Belletet al, 2014), BEDL goes beyond the stae-of-the-art
in muliiple aspects:

dataset. 2

1. Introduction

Many classification approaches in machine leaming explic-

itly or implicity rely asure of distance (Kuli,

2013; Bellet et al, 2014; Mokbel etal., 2015). This is par-

don Technalogy, Bielefeld Universi
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Com:
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Proceedings of he 35" Inernational Confernce on Machine
Learning, Stockbolm. Sweden, PMLR 80 2018, Copysight 2018
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. Bellet etal. (2012), we provides

generalized re-formulation of the edit distance which
lends itself 1o ing, and can be applied to
ary Vindof i dsapco whick wes eplocement delo
tion, and insertion operations. Furthermore, we con-
sider not only one optimal edit seript for metric learn-
ing, but all o-optimal edit scripts via novel forward-
backward algorithm,

Our approach requires only a linear number of data
twples for metric learning. a5 we represent classes by
few prototypes. which sxe selected via median learn-
ing vector quantization (Nebel et ., 2015).

 Most importanty, we do not direatly leam the op-
eration costs fo the siing edit distance, but instead
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We checked that this hasn't
been done before, really!
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Tree Edit

leam a vectorial embedding of the label alphsbe for
curdats s, which ikl el opertion
T reformulion cnures that the resling
i e conforms to ol mevic some. Futes
we can interpret the resulting embedding vectors via|
visualization, their painwise distances and norms.

e b by discusing et ik
BEDL I e dea. snd iy we evie BEDL. ex.
perimentally ind discuss the resuls

2. Related Work

Our work is reluted to muliple areas of machine learning,
‘most notably distances on structured dats, metric leaning.
and vector embeddings.

In the past decades, muliple distance measures for struc
ured dua - ic.

been suggested.
tance based on exist raph ke
D Son Vi & Speit 3010, s s Nesiher
Lehman Graph Kemels (Shervashidze et al., 2011), topo-
logical distance-based tree kemels (Aol t al. 2015).
or deep graph kemels (Yarardag & Vishwanathan, 2015).
Stuch Kernels achieve state-of-the-art results on structured
dita and can be adipted to wraining data via muliple
Kernel learning (Alolli & Donini, 2015), or kemels based

however, only bring trees from the same class closer
together (Bellet etal., 2014). For example, Boyer et l.
(2007 have proposed to replxce the tree edit distance by
the negative log probubiliy of all tree dit scripts which
transform the Lef inpu tree  into the right input tree 7.
Accordingly. the costs of edit operstions cliange o prob-
abilties of replacing. deleting. or inserting  certain la-
bel. These adit probabilitis are adepted to maximize the
probability that trees from the same class are edied into
eachother (Boyer et al. 2007). To replace generative mod-
els by discriminative ones, Bellet et l. (2012; 2016), have
proposed o learn an edit distance . such that the corre-
sponding similarity 2 - expl~d(x,)] ‘good” as de-
fined by the goodness-framework of (Balcan et al, 2008).
‘Goodness according 1o this framework means that a lin-

the space of similarites (Balcan et ., 2005; Bellet et al.
2012). " Belletetal. (2012) have experimentally shown
that this approach outperforms generative edit distance
metic learning and have also established generalization
suarantees based on the goodness framework. Therefo
this go0d edit similariy learing (GESL) approsch of
Bellet et al. (2012) is our main reference method.

Our novel approsch is swongly inspired by GESL. How-
ever,our approach goes beyond GESL in key aspects. Fist,
we uilize a differentcost function, namely the generalized
learning vecior quantization (GLVQ) cost function, which

2018). Ker-
nels, however. have drawbacks i terms of interpretability.
as ahigher disance value does not necessarily relate toany
Kindof it e brwee e npu e, Pt

re by definition limited o be positve semi-
e ity v oo hon o et
sets (Schleif & Tino, 2015).

If one sives for an interpretable measure of distance.
edi distances are a popular choice, for example for
he comparison of protein sequences in bioinformatics
(Smith & Waterman, 1981), or absiract syntax trees for in
telligent wioring systems (Pasen et al, 2018). Here, we

closer is 1 the clos-
m prciypial cample fom the same class compared

sest prototypical example from another class
e Yomade 1905 s o GESL VG st e
theoretically well-justified because it yields a maximum-

a principled way to select prototypical examples for metric:
learning, and isflexible enough to notonly lear acost ma-
trix, but aso  vectorial embedding of the tre labels, such
that the. o provides

focuson

I

orderad e Finto xmlhtmldert;\l!z o @i & S
1989). Such ordered tres are the most gen sue

e o e ested ey ol s
a5 cdit distances on unordered rees and general graphs are

tance o o 5 8 spcisl cne, uch i ca b
oo eprsentaive for it deances a5 such

Metric keaming for the tree dit distance corresponds 1o
adspting the costs of edit operations in order o being trees
from the same class closer and push trees from different

While embedding approaches e common in the lit

entue, prier work bas focused mosly oo embed:
ding wes as a whole foe example via graph herel
ipproaches (ilital. 2015 2018;

et

ppeosces Gicinetal. 15) In this comion,
sh 10 obiain an embedding for the single elements

of e nd i i e e, Asof e, och
inthe form of

Imost
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Example: Reading a typical machine

We are very good and math
and our method is justified

19018

1 1A T

1R0A NSNNOR Tre T 0

arYiv

Tree Bt

learning paper

recurrent neural network for natural language processing
taks Choet l, 2014 Suveral, 2014, I aidsion
fortres, our appecach aso provides.
+ comeponding e sdit disrcer vih i opimized
for clssification, and offers an inuitive view on the da
Supporing apphcations k. mcligent wioring sysiems
(Paskiencet al. 2018).

H

3. Background

In thissection, we reviitthe busic problem of ree dit dis-
tance learning by first introducing the ree edit distance of
Zhang & Shasha (1989, as well as the metic leaning for-
malization suggested by Belletet al. (2012).

3.1, Tree Edit Distance

Wedncauwerorerame e Vaws(r, ) where

for any x € X, and such that the riangular incquality is
fulfilkd.

L Let ¢ be a psewdo-metric on X U {~). Then,
the cormesponding tree edit distance i (. ) can be com:
puted in O - [§%) using a dynamic programming
scheme.

Coment il e st eguts e b
amic prog ramming scheme overestimates the ree edi dis.

Proof. Referto Zhang & Shasha (1959) for a proof of the
firstclaim, and refer 0 the supplementary material (Pafen
2018 for a proofof the second caim. o

Beyot casbing us 0 o the e it e o
ently,

reXands,
oner - We dennethe st af sl posabe s oer X ¢
0. Fanter we il + e o e . Ve dene
the size of a ree 2(2y,._, ) as [E] 1= 1+ L0 15|
Finally. we call a istof lmesq T aforest. Note that
every tre i also a fores

Next. we inwroduce edits over trees. In general, a ree
edit 3 s a function which transforms  forest into a for.
est (Paalienetal, 2018). In this paricular case, we are
only concemed with three kinds of edits, namely dek-
tlow, wiich o 8 e ol from » forst; e
inserta certain labelinto  forest: snd replace.

ot whidh remove 3 e bl o orest o
another label inits place. For example, deleting  from a

(7.2) resuls in the forest y, 2. Inserting x into this
forest s parent of y resuls in the forest x(y). 2. Finally,
replacing  with c inths fores resuks n the forest (),

We s ach it i acot i fction ¢ (XU
{-))? -+ R. In paricular, we define the cost ofa deletion
of abel 7 2 . ). the cosof n inserion of el
as c(— ), and the cost of a replacement of label = with
Label y s ¢(r, ). We defne the costof a sequence of edits
8167 3 the sum over the costs of all edits.

Finally, we define the tree edit distance d, (7, ) between

any o trees 7 and § according 10 ¢ as the cost of

tance d (x(y. 2).i(2(q) between the rees x(y. z) and

a(z(c) s 3 because the cheapest sequence of edit i to

replace x with g, deete y, and inser 5.

Zhng e S 199 st e e e e

canbecompua ity wing 2 dyamic rogrming
algorithm if s a pseudo-metri, meaning thal

eeaine nd ymmerc unctin, i ht (o, )

Teling nee el disance d s 3 ewdo-merne et
Theorem 2. Let c be a psewlo-metric on XU { ). Then,
the corresponding tee edit distance d is a psetalo-metric
on the set of possible rees over X.

However if  violates any of the pseudo-metric properties
(except for the riangular inequalit), we can consirct ex-
amples such that d violates the same pseudo-metric prop-
erties.

Prf Refs 0 e gty el (e,
20180,

Bl s e ke it ot ncion
© desirable. Howeve ing preudo-metric propert
onfmyhecmllengznzm et leaning. vhih posive]
our key mrivations for vectorial embeddings

32.Tree Edit Distance Learning

e it e lering exsentaly mews o aiap e

such tha the resulting tree editdisance i
e et s o ok ot Following Belletet a.
(2012: 2014), we frame tree edit distance learning as min-
imizing some loss function over a et of pasitive pars of
rees P C T(X)? and negaive paes of wees N C T ()"
that s, rees which should be close and for away respec.
tively. In paricular, given a loss function £ we wish o
Salve the optimization probleny:

min E(d, P, N) m

In our contribution. we build upon the good edit similar.
ity learning (GESL) approach of Belletetal. (2012), who
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If you want to repeat our
experiments, you need
to do all this stuff

14 Tnl 2N1Q

S|

1

o
7
S
]

ofthe pcdit disance . (7. 7) with espect o ()

Vato)dea(5.0) = ©

m o R
Lins [; i ummnu,m]

il et
A;m.m [Z P,

vhee i e Konecker Dol i () = 1 =y
and 0 otherw

() — () ]
7 ) = awl

Finaly we can plug this result into Equation 5, which
yiekds a gradient Vi . such that we can leam the vec-
{oril embedding of A via gradient technies

e oty e B L 019 To ment

such a degeneration, we follow the regularization recom-

‘mendation of Schncider tal. (2010) and add the term

3 log(det(AT - A)) to the GLVQ loss 4, which udds

the gradient -2 A1” where Al is the Moore-Penrose-
" o

Yl might g e clasifaion sk i uestion
perica e vl n e follovig dota s, nclu
g v o oo s s

Strings: A two-class data et of 200 strings of length 12,
adapted from Mokbel et . (2015). Swings in class 1 con-
Jowed

that they consistof 5 a or b symbals, followed by a c or
4. followed by another 6 a or b symhols. Note that the
clasescanbeneilerdscrimiied vialngth or i -
bol frequency features, The decisive discriminative festure
o where ot s locaed i the suing

MiniPalindrome and Sorting: Too data sets of Jaa pro-
‘grams, where classes represen different strategics o solve.
3 programming sk, The MiniPalindrome datsset contans
48 prgrans inlemeningon of gt iteges et
whether an input sring contains only palindromes (Paabien,
20163, and the Sorting data set contains 64 programs im-
plementing cither a BubbleSort or an InsertionSort sraiegy
(Pasen, 2016b). The programs are represented by their
bitract synt ‘one of

ditonally

functi

al.
2012) and add the Froberius-norm - A1 to the los,
which adds the gradient 32 A.
As intialization of the vectorial embedding we use a U~
demenional simplex wkh i et 1, il o
Cofe.) = 0if 2 = y and 1 otherwise (refer to the sup-
Plmentary macra fora more detalod ook i Ui b
talizaton (Paatien. 20150))

Reganding computations] complesity, we can anslyze the
radient computaton. To compute gradient. we first need

2 e
declaration, method call, tc).
Cystic and Leukemia: Two data sets from KEGG/Glycan
dan base (Hushimowetal, 2006) adapied from
Gallicchio & Micheli (2013), where one class corresponds
to benign molecules and the other chss comesponds to

of 29:and oneof 57 for Cystic and Leukemia respectively),
and the roots are chosen according to biological mecning
) 160,

prototype for

Hashi 1..2006)

K). Then. we
need to compute the gradient or each data point via Equa-
tion 6, which is possible in O(m - 12 - V) where n is the
Largesttre size in the data set. Computing the regulariza-

cantypically be regarded s consian. In our experiments,
we limit the number of gradient computations 0 200.

5. Experiments

In our experiment. we investigate whether our proposed
metric leaming scheme. embedding edit distance leam-
ing (BEDL), s able 10 improve classification accuracy be-
yond the default initialization, whether BEDL improves
upon the accuracy obtained by good edit similarity keaming
(Bellet et L., 2012), and whether the resulting embedding

Sentiment: A large-scale two-class data set of 9613 sen-
tences from movie reviews. where one class (4650 trees)
comresponds 10 negative and the other class (4963 trees) to

syntax trees, where inner nodes sre unlsbeled and leaves.
are labeled with one of over 30,000 words (Socher et al.
2013). Note that GESL is not practically applicable for
data set. as the number of parameters 1o learn scales
quadraically with the number of vords. i, > 30,00°%
To make BEDL applicable in whis case, we iniialize the
vectorial cmbedding with the 300-dimensional Common
Crawl GloVe embedding (Pennington et al, 2014), which
s reduc via PCA, misiniag 05 o the ot \ariace
(V= 16.4 = 2.3 dimensions on average = standard devi
ation). We adapt this inial embedding va  lnear -
formation 2 & RV < which we lear vie BEDL. Fur-
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ther, we replae the cost fungtion with the cosine distance
ea(i.g) = k- L-(@-H 2P/ 7| .
e GloVe

1. The meantesclassificaton emor and untimes or metsc
Tearning. averaged over the cross vlidaton rals, s wellus the

Vordembeding (Peamingion et . 014 e o the -
plementary mterialfor the gradient; PasBen (2018b).

On each data st we perform a crossvalidation! and com-
pise the average test error acoss folds. In particulzr, we
compare the erro when using the inital tree edit distan
with the error when using the pseudaredit dstance leamed
Sigeod oty ewring (GESL), ad s e ol
distince leamned v oposed spproach (BEDL)

In general, we would expect that a discriminative metric
I forone clasir s ol clasiiction s
ing other clasifiers. Therefore, we report the classifica-
ot o o s, ‘namely the median general-

nearest neighbor (KNN) clasifier, and the support vector
machine (SVM) based on the radial basis function kernel.
In order o ensure  kemel matrix for SVM, we set negative.
eigemvalues to zer (clip Eigenvalue correction). Note that
this eigenvalue correction requires cubic runtime in terms
ofthe number of data points and is thus prohibitively slow
forlrge daa st e, T, for e Seimen o
 trained the classifiers on a randomly selected sam-

e o 30 ot rom e g dta

We_optimized all hyper-parameters in a nestad 5-fold
crossvalidaton, namely the number of protoypes K for
MGLVQ and LVQ metric leaming i the range 1, 13 the
numberf neighbors for KN in the range |1 15]. the ker-
nel bandwidih for SVM in the range [0.1.10), the spar-
sity parameter ) for the goodness chssifier in the range
105,10} and s eulzaionsuength o GESL nd
BEDL in the ran - [10°°.10°%]. We chase
et of rtigpesfor BEDL s vel a the et of
ncighhors for GESL as the optimal number of prototypes
K for MGLVQ.

implementaions, we used custom implemen-
ttions_of KNN. MGLVQ. the goodness  classi-
fier. GESL. and BEDL. which are avalabe al

For §
mentation (Chang & Lin, 2011). ~ All experiments were

“We wed 20 fokds or Sengs and Setiment, 10 for Cysic
and Leukemia, 8 fo Soning and 6 for MiniPlndome. For the

hey-axis the differen

s umd orvahaion, Tl s

sub-divided for cach dats set, The lowestclasification eror for
i et g bld pi
T moinar  okeor
L aaioor
Uhirsr  cofoos
iz ooiaor
Navo i I deiaor
s i wlii dokaer
Amme_“o¥o  oiniools ams et
[ e e
dient
Moo it e % i

R
fhen 213 855 presgerid

~ iz 82

fety e I

e FiS% joosiwx  E3iimc
Sl MRS 2aAUSN oSie
b wazasx - FYTTr
Nowe  oiist - st
s AR 533450
fodes T2 19% ey
P o e

‘performed on a consumer-grade lsptop with an Intel Core
17-7700HQ CPU.

“The resuls of ourexperiments ae displayod in Table 5. In
all data sts and for al clasifers, BEDL yilds lower cls-
sifcaton emor compised to GESL. For the Stings data
set we can also verfy this result staistcally with 3 one-
sided Wilcoxon signed ik es (p < 10-4). Funlbermore.
in al but the Leukemia data set, BEDL yieds he overall
st clssfiction resuls. and i close 0 optimal fo the

el ok il cotoed 3 el e o
i Fs e Cysic and Lk Tlds were

Leukemia data set ol e, BEDL
could improve the accuracy for KN, in five out o

Conssent with the puper of G003

e doa .

oeral dta et was maintined

it stayed equal), and in three out of six cases for the good-
ness classifer. For the Strings and Sentiment data ets we.
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“The resuls of ourexperiments ae displayod in Table 5. In
all data sts and for al clasifers, BEDL yilds lower cls-
sifcaton emor compised to GESL. For the Stings data
set we can also verfy this result staistcally with 3 one-
sided Wilcoxon signed nk es (9 < 10~ Funby

in al but the Leukemia data set, BEDL yieds he overall
best classification resuls, and s close 10 optimal for the
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performed on a consumer-grade lpiop with an Intel Core
{77700 HQ CPU.

“The resuls of ourexperiments ae displayod in Table 5. In
all data sts and for al clasifers, BEDL yilds lower cls-
sifcaton emor compised to GESL. For the Stings data
set we can also verfy this result staistcally with 3 one-
sided Wilcoxon signed nk es (9 < 10~ Funby

in al but the Leukemia data set, BEDL yieds he overall
best classification resuls, and s close 10 optimal for the
Leukenia data set (027 In all cases, BEDL

el ok il cotoed 3 el e o
i For the Cyic and Leukens n ol were
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On cach dta set, we perform 4 crossvalidaton’ and com-
pire the average test artor across fokls. In paricule, we
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105, 10] and he regulirizaton srength 5 for G
BEDL in the ange 2. K - (10°°. 10|, We chose the
numberf prototypes for BEDL. i wellas the number of
ncighhors for GESL as the optimal number of prototypes
K for MGLVQ.

implementaions,  we wed custom_implemen-
wions _of KNN. MGLVQ. the goodness clasi-
fer, GESL. and BEDL. which are avalabe a
https://dol.org/10.4119/unibi /2519994,
For SVM. we uilzed the LIBSVM  sandard imple-
mentation (Chang & Lin, 2011). All experiments were
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{77700 HQ CPU.
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S bt ek 4 s BEDLyichs e v
best classification resuls, and s close 10 optimal for the

e hat cach fod sl contained  mesningful nuber ot
points. Forthe Cystic and Leukemia data set. ou ten fods were

Leukemia data set (027 In all cases, BEDL
could improve the accuracy for KNN, in five out of six
ystic duta se). in

conssent with the paper of 2003). Tnall

oeral dta et was maintined

it stayed equal), and in three out of six cases for the good-
ness classifer. For the Strings and Sentiment data ets we.
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