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What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, . . .)

from training data that generalize to test data.

If you show me a data set of example inputs and outputs (x1, y1), ..., (x1, ym), machine
learning means to automatically find a function f , such that f(xi) ≈ yi for all
examples and for new, unseen data (generalization).
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Example: Regression

Example: (1, 2), (3, 4), (7, 8). What is f?

1 2 3 4 5 6 7
0

2

4

6

8

10

x

y

Which one is best? ⇒ Depends on what generalizes to new data
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Why bother with learning about ML?

I ML is a useful toolbox for many tasks (method field, similar to statistics)

I ML is a hype in research (Crew, 2019), business, and society more broadly

- and
it’s good to know capabilities and limitations
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Learning objectives of this course

I Conceptual knowledge: Most important ML concepts and how they are related

I Operational knowledge: How to do ML (at least on a high level; or with
voluntary programming tasks)

I ML literacy: De-mystifying ML and gauging the capabilities of ML approaches
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Overview of ML

Artificial Intelligence

Machine Learning

Deep Learning

neural networks

ca. 290.000 papers since 2015

ca. 630.000 papers since 2015

ca. 73.000 papers since 2015

ca. 300.000 papers since 2015

acc. to google scholar
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Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. “Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

3. “Modern” ML and neural networks: Neural network modules, recipes for neural
networks, adversarial attacks

4. Reinforcement learning and ethics

Unfortunately not covered: Bayesian ML, Graphical Models, Causality, random forests,
. . .
Note: One homework task for each session
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Basic Mathematical Concepts



Functions

Definition: Function
Let X and Y be sets (e.g. the set of all possible integers).

Then, a function f is a set
of tuples (x, y) where x ∈ X , y ∈ Y, such that no x occurs in two tuples.

X

1

2

3

. . .

Y

1

2

3

. . .

f = {(1, 2), (2, 3), (3, 4), . . .} We define f(x) as y such that
(x, y) ∈ f .

Intuitively, a function is some
kind of machine or program
which returns a deterministic
output for some input.
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Learning Algorithms

Definition: Learning algorithm

Let X and Y be some sets.

Then, we call any finite set D = {(x1, y1), . . . , (xN , yN )} a
dataset from X × Y.
A learning algorithm A is a function that maps any data set D to a function
fD : X → Y.
We also call the output fD = A(D) a model on D according to A.

I Intuitively, a learning algorithm estimates the relationship between the sets X and
Y in form of a function.

I A good algorithm ensures that for all (x, y) ∈ D, fD(x) ≈ y.

I . . . and that this holds for new data as well
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Learning Algorithms Illustration

The simplest possible baseline algorithm: Always return the mean of the outputs, i.e.:
A
(
D
)

= fD with fD(x) = 1
|D| ·

∑
(x,y)∈D y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y
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Loss function

Definition: Loss function
A loss function or error function ` is a function that maps a dataset D and a model
f to some real number `(D, f).

I Intuitively, `(D, f) tells us how badly f reproduces the data in D
I Most common example: Root mean square error (RMSE):

`RMSE(D, f) =

√√√√ 1

|D|
·
∑

(x,y)∈D

(
y − f(x)

)2 (1)
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Illustration: RMSE
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Illustration: RMSE
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Optimization



Learning as Loss Minimization

I Most learning algorithms A are based on loss minimization, i.e.: A(D) is defined
as a model f that minimizes some loss `(D, f)

I In other words: We want to solve the opimization problem

min
f∈F

`(D, f) (2)

I Different algorithms differ in loss, optimization strategy, and model class F

I Focus here mostly on model classes, but optimization strategies are a research field
of their own (Paaßen 2019)
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Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small.

−2 0 2

0

2

4

6

8

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ0

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ0

(1, ∂
∂θ0

θ2
0)

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ0

−0.25 · ∂
∂θ0

θ2
0

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ0

θ1

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ0

θ1
θ2

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Gradient Descent

Optimization problem:

min
θ∈R

`(θ)

1. Start with some initial θ0

2. Go slightly ’down’ the function:
θt+1 ← θt − η · ∂

∂θt
`(θt)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small. −2 0 2

0

2

4

6

8

θ0

θ1
θ2θ3

θ

`(
θ)

`(θ) = θ2; ∂
∂θ `(θ) = 2θ

16 / 55



Example: Constant Functions

1. Consider the model class of constant functions:
F = {fθ|fθ(x) = θ for all x ∈ X and some θ ∈ R}

2. Consider the data set D = {(1, 2), (3, 4), (7, 8)} and RMSE loss
3. Optimize θ via gradient descent
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Example 2: Cosine Functions

1. Consider the model class F = {fθ|fθ(x) = 10 · cos(x · θ) for some θ ∈ R}

2. same data and loss as before
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Challenges in optimization

I saddle points, sudden gradient shifts,
local optima, . . .

I still problematic for better algorithms,
e.g. ADAM, conjugate gradient,
L-BFGS (Paaßen 2019)

I So, when is optimization “nice”?
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Convex Optimization

Convexity

A function ` : Rm → R is called convex if for all x, y ∈ Rm and all α ∈ [0, 1] it holds:

`
(
α · x+ (1− α) · y

)
≤ α · `(x) + (1− α) · `(y)

I Intuitive: Any line between two points on the
function graph is above the function graph

I Equivalent: The gradient is below
⇒ Gradient descent finds global optima
I Also equivalent: Second derivative is always

positive
⇒ Gradient descent is “smooth”
I Pro tip: Design your loss to be convex
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)

convex function
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Linear Regression



Introduction
One-dimensional linear regression model class:

F = {fw|fw(x) = w · x, w ∈ R}

Example: I wish to bake x vegan brownies.
My recipe is:
ingredient amount
Zucchini [g] 150
Flour [g] 60
Cocoa powder [g] 15
Sugar [g] 60
Oil [ml] 15
. . . . . .

For full recipe, refer to:
https://cakeinvasion.de/

I How much of each ingredient do I
need to buy for x portions?

I for each ingredient, one linear model
with input x and coefficient w in table
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Generalized Linear Regression

I Assume a function φ : X → Rn that maps inputs x to n-dimensional feature
vectors φ(x)

I Model class of generalized linear regression:

FGLR = {f~w|f~w(x) = ~wT · φ(x), ~w ∈ Rn}

where ~wT · φ(x) = w1 · φ1(x) + . . .+ wn · φn(x)

I Example: You are the inputs and φ maps to your respective body height, pinky
finger length, and favourite color (n = 3).
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Generalized Linear Regression: Derivation
I Assume data set D = {(x1, y1), . . . , (xN , yN )} and feature map φ are given

, where
y1, . . . , yN are real numbers (e.g. your shoe size)

I Then, we wish to solve
min

f∈FGLR
`RMSE(D, f)

I First trick: Rephrase the problem
min
~w∈Rn

N∑
i=1

(
~wT · φ(xi)− yi

)2
I Consider the gradient (1st derivative) and Hessian (2nd derivative):

∇~w

N∑
i=1

(
~wT · φ(xi)− yi

)2
=
∑
i=1

2 · φ(xi) ·
(
φ(xi)

T · ~w − yi
)

∇2
~w

N∑
i=1

(
~wT · φ(xi)− yi

)2
= 2

∑
i=1

φ(xi) · φ(xi)
T ≥ 0 ⇒ convex
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Generalized Linear Regression: Derivation (2)

I Recall: If the loss is convex, any point with vanishing gradient is global optimum

I Let’s try to find such a point analytically!

∇~w

N∑
i=1

(
~wT · φ(xi)− yi

)2
=
∑
i=1

2 · φ(xi) ·
(
φ(xi)

T · ~w − yi
)

= 2Φ ·ΦT · ~w − 2Φ · ~y

where Φ =
(
φ(x1), . . . , φ(xN )

)
, ~y = (y1, . . . , yN )T .

I 2Φ ·ΦT · ~w∗ − 2Φ · ~y !
= 0

⇐⇒ ~w∗ = (Φ ·ΦT )−1 ·Φ · ~y

I AGLR(D) = f~w∗
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Example

0 2 4 6 8
0

2

4

6

8

10

x

y

I Let’s start with φ(x) = x

⇒ Does not work /
I We need a constant term; so let’s try
φ(x) = (1, x)T

⇒
f(x) = ~wT · φ(x) = w1 · 1 + w2 · x

⇒ ,
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Polynomial Regression

Let’s consider φn(x) = (1, x, x2, . . . , xn).
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degree 1
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Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class Fn a universal approximator

if for any smooth
data set of real numbers D and any ε > 0, there exists an nε, such that
minf∈F `RMSE(D,Fnε) < ε.

Generalized Linear Regression is a universal approximator for surprisingly many φ, e.g.:
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Universal Approximation (II)

I Universal approximation also works in multiple dimensions.

A simple example:
φ(~x) =

(
tanh(~uT1 · ~x), . . . , tanh(~uTn · ~x)

)
for random (!) ~u1, . . . , ~un ⇒ Basic trick

behind neural engineering framework, extreme learning machines, echo state
networks . . .

I For all φ: Higher n → better approximation on the training data

I But lower n is more efficient and more interpretable

⇒ homework task

I Also, lower n is more robust to input noise
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Regularization



Polynomial Regression with Noise

Let’s consider φn(x) = (1, x, x2, . . . , xn).
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⇒ For high model complexity, model can fit the noise and does not generalize
(overfitting)
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Regularization (I)
I empirically, overfitting behavior relates to extreme parameter values (> 105)

I . . . because the optimization will do anything to decrease the training error even a
tiny bit

⇒ Punish extreme parameter values (regularization)

min
~w∈Rn

`︷ ︸︸ ︷
N∑
i=1

(
~wT · φ(xi)− yi

)2
+ λ · ~wT · ~w

∇~w` = 2·
N∑
i=1

φ(xi) ·
(
φ(xi)

T · ~w − yi
)

+ 2 · λ · ~w

∇2
~w` = 2

N∑
i=1

φ(xi) · φ(xi)
T + λ · I ⇒ still convex
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Regularization (II)

∇~w`
!

= 0

2 · Φ · ΦT · ~w − Φ · ~y + 2 · λ · ~w !
= 0

(Φ · ΦT + λ · I) · ~w !
= Φ · ~y

~w
!

= (Φ · ΦT + λ · I)−1 · Φ · ~y
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Regularized Regression with Noise

Let’s consider φn(x) = (1, x, x2, . . . , xn), λ = 10−3.
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Summary

I Generalized linear regression is a powerful tool for prediction, especially with good
feature map φ

I Already illustrates many typical challenges of ML: Underfitting, overfitting,
generalization, model architecture, feature processing, . . .

I Success in practice depends on understanding data, features, optimization,
numerics, . . .
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Probabilities



Generalization Redux
We expect generalization between these
data sets.
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⇒ We only want to generalize only to datasets from the same data source
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Standard Data Generation Model

x

input (randomly generated)

f̂

“true” unknown function (deterministic)

ε

noise (randomly generated)

+ y = f̂(x) + ε

output

I Assumes that the data are identically and independently distributed (i.i.d.)

I x, ε, and y are random variables
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Random Variables

I Intuitively, a random variable X is a variable

that can take a value x from a set
ΩX with some probability pX(x) ∈ [0, 1].

I We call the function pX : ΩX → R+ with
∫
x∈ΩX

pX(x)dx = 1 a probability
density

I A probability distribution is a function PX that assigns probabilities to subsets
A ⊆ ΩX , i.e. P (X ∈ A) :=

∫
x∈A pX(x)dx.

I We often write p(x) or P (A) for short, if X is clear

I The precise definition is more complicated! Refer e.g. to Wikipedia

39 / 55
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N coins

I Consider N random variables Xi, each representing a fair coin toss with
Ω = {0, 1} and pXi(0) = pXi(1) = 1

2 .

I Then, consider the mean as a random variable, i.e. Y := 1
N · (X1 + . . .+XN ).
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The Gaussian density
I Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally

distributed (central limit theorem)

I Density:

p(x) =
1√

2π · σ2
· exp

(
− 1

2

(x− µ)2

σ2

)
I µ and σ are parameters of the density called mean and standard deviation
I We often write p(x) = N (x|µ, σ) for short
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I We often write p(x) = N (x|µ, σ) for short
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Dependent Densities

I Recall: Data generation model has three random variables: Input x with density
px, noise ε with density pε, and output py with density py

I We can choose px and pε independently (based on our belief about the data)

I But y depends on x and ε :

y = f(x) + ε

⇒ We need a joint density px,y

(x̂, ŷ) = px(x̂) · pε
(
ŷ − f(x̂)

)
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Example: Joint Density

I x: Fair six-sided die; f(x) = x+ 1; y = f(x) + ε

I ε: pε(−1) = 1
4 , pε(0) = 1

2 , pε(1) = 1
4

I px,y(x̂, ŷ) = px(x̂) · pε
(
ŷ − f(x̂)

)
px,y 1 2 3 4 5 6 7 8

1 1
12

1
24 0 0 0 0 0

2 0 1
24

1
12

1
24 0 0 0 0

3 0 0 1
24

1
12

1
24 0 0 0

4 0 0 0 1
24

1
12

1
24 0 0

5 0 0 0 0 1
24

1
12

1
24 0

6 0 0 0 0 0 1
24

1
12

1
24
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I px,y(x̂, ŷ) = px(x̂) · pε
(
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Marginal & Conditional Density

I Marginal Density: px(x̂) =
∑

ŷ∈Ωy
px,y(x̂, ŷ)

I Conditional Density: py|x=x̂(ŷ) = px,y(x̂, ŷ)/px(x̂)

(often p(ŷ|x̂) for short)

I we call x and y independent if px,y(x̂, ŷ) = px(x̂) · py(ŷ) for all x̂, ŷ

Example:

x̂ px(x̂) p(1|x̂) p(2|x̂) p(3|x̂) p(4|x̂) p(5|x̂) p(6|x̂) p(7|x̂) p(8|x̂)

1 1
6

1
4

1
2

1
4 0 0 0 0 0

2 1
6 0 1

4
1
2

1
4 0 0 0 0

3 1
6 0 0 1

4
1
2

1
4 0 0 0

4 1
6 0 0 0 1

4
1
2

1
4 0 0

5 1
6 0 0 0 0 1

4
1
2

1
4 0

6 1
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4
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2
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(often p(ŷ|x̂) for short)

I we call x and y independent if px,y(x̂, ŷ) = px(x̂) · py(ŷ) for all x̂, ŷ
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Construction

I Conceptually, we would start by specifying a full joint density and infer all
properties (marginal, conditional, independence) from that

I Practically, we start with independence assumptions, marginals, and conditionals
and infer the joint density from that: py,x(x̂, ŷ) = py|x=x̂(ŷ) · px(x̂)

45 / 55



Construction

I Conceptually, we would start by specifying a full joint density and infer all
properties (marginal, conditional, independence) from that

I Practically, we start with independence assumptions, marginals, and conditionals
and infer the joint density from that: py,x(x̂, ŷ) = py|x=x̂(ŷ) · px(x̂)
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Probabilistic Regression
I Recall: We assume that input and noise are independent

I We assume uniform data generation, i.e. px(x̂) = 1
C for some constant C

I We assume Gaussian noise, i.e. pε(ε̂) = N (ε̂|0, σ) for some σ > 0

⇒ conditional: py|x=x̂(ŷ) = N (ŷ|f(x̂), σ) where f is the “true” underlying function
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Probabilistic Regression (II)

I Assume that example data set D = {(x1, y1), . . . , (xN , yN )} is generated as above

I Find the function f that maximizes the likelihood of the dataset

max
f∈F

N∏
i=1

px,y(xi, yi)

⇒ Equivalent to RMSE minimization
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Probabilistic Regression with Bayesian Flavour

I Consider f (or the parameters of f) as a random variable itself

I Define a prior pf , e.g. pf (f̂) = N (w1|0, λ) · . . . · N (wn|0, λ)

I Maximize the posterior probability for the model

max
f̂∈F

pf |D=D̂(f̂)

⇒ Equivalent to Regularized RMSE minimization
I Note: “Truly” Bayesian modelling would do an average across all models (Bishop

2006)
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Lessons from Machine Learning Theory



Probably Approximatively Correct (PAC)

I Question: Under a probabilistic view, what does generalization mean?

I Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the ’true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let px,y be a density over an input set X and an output set Y.

We call a learning
algorithm A probably approximatively correct with bounds δ, ε ∈ (0, 1) on px,y if a
1− δ fraction of sufficiently large datasets D sampled from px,y yield a model
fD = A(D) such that ∫

X

∫
Y

(
fD(x̂)− ŷ

)2 · px,y(x̂, ŷ)dx̂dŷ ≤ ε

Proving PAC properties is one of the key objectives in Statistical Machine Learning
Theory (Shalev-Shwartz and Ben-David 2014).
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Bias-Variance decomposition

I Question: Why does regularization help for generalization?

I Let fD := A(D) and let f̄(x) :=
∫
fD(x) · pD(D)dD

I Consider for some (x, y) the average error a learned model will make.

∫ (
fD̂(x)− y

)2 · pD(D̂)dD̂

=

∫ (
fD̂(x)− f̄(x) + f̄(x)− y

)2 · pD(D̂)dD̂

=

∫ (
fD̂(x)− f̄(x)

)2 · pD(D̂)dD̂︸ ︷︷ ︸
Variance / “Overcuriosity”

+
(
f̄(x)− y

)2︸ ︷︷ ︸
Bias / “Undercuriosity”

Regularization can strongly reduce variance while slightly increasing bias ⇒ better
generalization
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Crossvalidation and Experimental Design



Crossvalidation
I PAC is based on the ’true’ data distribution

. . . which we don’t know

I But we can approximate the distribution over all possible data sets by constructing
disjoint subsets D1, . . . ,DM of our data set D

∫ (∫
X

∫
Y

(
fD̂(x̂)− ŷ

)2 · px,y(x̂, ŷ)dx̂dŷ
)
· pD(D̂)dD̂

≈ 1

M

M∑
j=1

1

|Dj |
∑

(x̂,ŷ)∈Dj

(
fDCj

(x̂)− ŷ
)2

DD1 D2 D3 D4D1

test train

D2

testtrain train

D3

testtrain train

D4

testtrain
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)2 · px,y(x̂, ŷ)dx̂dŷ
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)2 · px,y(x̂, ŷ)dx̂dŷ
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)
· pD(D̂)dD̂

≈ 1

M

M∑
j=1

1

|Dj |
∑

(x̂,ŷ)∈Dj
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How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms A1, . . . ,AK

I Get the best possible reference implementation for each baseline A1, . . . ,AK
I Collect multiple (!) data sets that represent your target domain well
I Approximate the generalization error for each algorithm on each data set using

crossvalidation
I Use K paired statistical tests to compare the errors of A with each A1, . . . ,AK

(e.g. Wilcoxon sign-rank test); use Bonferroni correction
I If too few datasets: Use the errors in each crossvalidation fold
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Example: Reading a typical machine learning paper

We did a cool new algorithm;
it can do x

This is what we can do
better than before

We checked that this hasn’t
been done before, really!
We are very good and math
and our method is justified

If you want to repeat our
experiments, you need
to do all this stuff
We tested on lots of data

Previous methods did okay . . .

..
.
bu

t
w
e
di
d
be
tt
er
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