Introduction to Machine Learning

Session 2: Distance-Based Machine Learning

Benjamin PaaBen
The University of Sydney

IK 2020, Giinne

THE UNIVERSITY OF

SYDNEY

1/30

https://creativecommons.org/licenses/by-sa/3.0

Recap: What is Machine Learning?

» There is a 'true’ data generating process y = f(x) + €

2/30

Recap: What is Machine Learning?

» There is a 'true’ data generating process y = f(x) + ¢, from which we only see a
sample D = {(21,41),---, (zn,yn)}

2/30

Recap: What is Machine Learning?

» There is a 'true’ data generating process y = f(x) + ¢, from which we only see a
sample D = {(21,41),---, (zn,yn)}

» We learn a rule fp from that sample

2/30

Recap: What is Machine Learning?

» There is a 'true’ data generating process y = f(x) + ¢, from which we only see a
sample D = {(21,41),---, (zn,yn)}

» We learn a rule fp from that sample (that's the machine learning part)

2/30

Recap: What is Machine Learning?

» There is a 'true’ data generating process y = f(x) + ¢, from which we only see a
sample D = {(21,41),---, (zn,yn)}

» We learn a rule fp from that sample (that's the machine learning part)

> ... that hopefully generalizes to the entire ground truth distribution

2/30

Recap: What is Machine Learning?

» There is a 'true’ data generating process y = f(x) + ¢, from which we only see a
sample D = {(21,41),---, (zn,yn)}

» We learn a rule fp from that sample (that's the machine learning part)

> ... that hopefully generalizes to the entire ground truth distribution, i.e.:
fo(z) = f(z) for all z

2/30

Smoothness assumption

> Question: When can we hope to generalize at all?

3/30

Smoothness assumption
» Question: When can we hope to generalize at all?

» lIdea: If the 'true’ function f is smooth

3/30

Smoothness assumption
> Question: When can we hope to generalize at all?
» Idea: If the 'true’ function f is smooth

Definition

We call a function f smooth if = being close to &’ implies that f(x) is close to f(a/).

3/30

Smoothness assumption
> Question: When can we hope to generalize at all?
» Idea: If the 'true’ function f is smooth

Definition

We call a function f smooth if = being close to &’ implies that f(x) is close to f(a/).

1 —— smooth

3/30

Smoothness assumption
> Question: When can we hope to generalize at all?
» Idea: If the 'true’ function f is smooth

Definition
We call a function f smooth if = being close to &’ implies that f(x) is close to f(a/).

1 /_\ —— smooth |
—— not smooth

\/

3/30

Smoothness assumption
> Question: When can we hope to generalize at all?

» Idea: If the 'true’ function f is smooth

Definition

We call a function f smooth if = being close to &’ implies that f(x) is close to f(a/).

1 /_\[\ —— smooth |
S —— not smooth

> 0.5 :

0 T~

3/30

Distance

» Smoothness is closely related to notions of distance

4/30

scikit-learn.org

Distance

> Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition

Let X be some set.

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition
Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition
Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,z") >0 Non-Negativity

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition
Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,2') >0 Non-Negativity
d(z,x’' Self-Identity

o
8

I
H\

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition
Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,z") >0 Non-Negativity
d(z,2) =0 <= z=4a Self-Identity
d(z,z') = d(z', x) Symmetry

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small

distance in input implies small distance in output

Definition

Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,z") >0 Non-Negativity
d(z,2) =0 <= z=4a Self-Identity
d(z,2) =d(z',z Symmetry
d(z,2") +d(z',2") > d(z,z") Triangular Inequality

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition

Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,z") >0 Non-Negativity
d(z,2) =0 <= z=4a Self-Identity
d(z,2) =d(z',z Symmetry
d(z,2') +d(«',2") > d(z,2") Triangular Inequality

> Idea: Use distances as interface to the data with key principle: Low distance
means similar prediction

4/30

scikit-learn.org

Distance

» Smoothness is closely related to notions of distance, i.e. f is smooth if small
distance in input implies small distance in output

Definition

Let X be some set. A function d: X x X — R is called a distance if for all
z, 2, 2" € X it holds:

d(z,z") >0 Non-Negativity
d(z,2) =0 <= z=4a Self-Identity
d(z,2) =d(z',z Symmetry
d(z,2') +d(«',2") > d(z,2") Triangular Inequality

> Idea: Use distances as interface to the data with key principle: Low distance
means similar prediction
» Note: Almost all algorithms implemented in scikit-learn.org
4/30

scikit-learn.org

Examples of Distances

Euclidean Distance

r @

N

5/30

Examples of Distances

Euclidean Distance

5/30

Examples of Distances

Euclidean Distance

5/30

Examples of Distances

Euclidean Distance Shortest Path Distance

Osnabrﬂck

T @ / Bielefeld
\ Miinster /
@ z

Hamm —
d(z,2') = /(@ —)T - (¥ — 1) > Soest
_ \/2n () o) Paderborn
= j=1\Tj i

5/30

Examples of Distances

Euclidean Distance Shortest Path Distance

Osnabrﬂck

T @ / Bielefeld
\ Miinster /
@ z

Hamm —
d(z,2') = /(@ —)T - (¥ — 1) > Soest
_ \/Zn () o) Paderborn
= j=1\Tj i

. T—1
d(.f[,‘7m’): x1I,Iu,I}JT Zt:l w(xt,mtﬂ)

r1=x,x7=2"
(:Et ,mt+1)€E

5/30

Examples of Distances

Euclidean Distance Shortest Path Distance

Osnaerck

T (@) /

Bielefeld
\ Miinster /
¢ Hamm
da,e)=/GE-F)T-F—-7) ™ Soest %
= /S () —)2
d(z,z') = min

Ty yXT
r1=x,x7=2"
(e, we41)EE

Paderborn

String Edit Distance

bla
yrep(a,u)
blu
yins(b)
blub

S w(ae, wer)

5/30

Examples of Distances

Euclidean Distance Shortest Path Distance String Edit Distance

Osnaerck bla
/ yrep(a,u)
T @ Bielefeld blu

Miinster vins(b)
/ blub
@ 7

Hamm d(z,2') = 51111% T
1,--,0T
d N — = 2NT . (7 _ 7 A Soest ™~ éro0...001 (z)=x'
(z,27) \/(:i z) (f 5) oc Paderborn ! 1
= \/Zj:1($j - ‘rj)
d(x,2') = min S w(wg, w)

Ty yXT
r1=x,x7=2"
(e, we41)EE

5/30

Regression

THE UNIVERSITY OF

SYDNEY

Nearest Neighbor Regression

> Assign the output for the closest input

7/30

Nearest Neighbor Regression

> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

7/30

Nearest Neighbor Regression
> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

10

S N B~ O
T
(o}
|

7/30

Nearest Neighbor Regression

> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

10

S N B~ O
T
|

7/30

Nearest Neighbor Regression
> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

10

S N B~ O
T
|

» Not a smooth model, but 'approaching smoothness’ for enough data

7/30

Nearest Neighbor Regression

> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

10

S N B~ O
T
|

» Not a smooth model, but 'approaching smoothness’ for enough data
> straightforward extension: average of k nearest neighbors

7/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

8/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

N
fo(x) = Z k(x,x;) a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

8/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

N
fo(x) = Z k(x,x;) a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

» For us, k is always the Gaussian or RBF kernel with hyper-parameter ¢ € R*:

8/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

N
fo(x) = Z k(x,x;) a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

» For us, k is always the Gaussian or RBF kernel with hyper-parameter ¢ € R*:
1 d(z,2')?
k(x,l’l) = exp (— 5 . T)

8/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

N
fo(x) = Z k(x,x;) a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

» For us, k is always the Gaussian or RBF kernel with hyper-parameter ¢ € R*:

AV
k(z,2') = exp (- % . d@g;}f))

> As loss, we use the regularized squared error as for linear regression:

8/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

N
fo(x) = Z k(x,x;) a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

» For us, k is always the Gaussian or RBF kernel with hyper-parameter ¢ € R*:
1 d AV
k(z,2') = exp (5 %f))
> As loss, we use the regularized squared error as for linear regression:
N
0@ =S (k-a-y)’+x-a’ K-a
i=1

8/30

Kernel regression (aka Gaussian Processes) — (Rasmussen and Williams 2005)

> |dea: Average predictions based on closeness:

N
fo(x) = Z k(x,x;) a; = E(g;)T -a
i=1

where k : X x X — R measures closeness and «; is the ith prediction

» For us, k is always the Gaussian or RBF kernel with hyper-parameter ¢ € R*:
1 d(z,2')?
N 9
k(x,$)—eXp(—§T)

> As loss, we use the regularized squared error as for linear regression:

al 2

(@) =y (ki-d—y) +r-a"-K-a
i=1

where K ; = k(x;, z;) and k; is the ith column of K .

Kernel Regression (I1)

> Let's consider gradient/derivative:

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

N
Val(@) =2 ki (ki-d—y) +2) K- @
i=1

9/30

Kernel Regression (I1)

> Let's consider gradient/derivative:

N N
Val(a) zz(za.a) -2 Fyit2nK-a
=1 =1

9/30

Kernel Regression (I1)

> Let's consider gradient/derivative:

Val(@) =2K-KT-d—2K-j+2\- K -a

9/30

Kernel Regression (I1)

> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 -y

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 -y
> Hessian: VZ((@) = 2K - [K + X - I] is positive (semi-definite)

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 -y

> Hessian: VZ((@) = 2K - [K + X\ - I] is positive (semi-definite) = convex

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 -y

> Hessian: VZ((@) = 2K - [K + X - I] is positive (semi-definite) = convex =
solution is optimal

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 -y

> Hessian: VZ((@) = 2K - [K + X - I] is positive (semi-definite) = convex =
solution is optimal

10 T

O N =~ O
T
(¢]
|

9/30

Kernel Regression (I1)
> Let's consider gradient/derivative:

Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 -y

> Hessian: VZ((@) = 2K - [K + X - I] is positive (semi-definite) = convex =
solution is optimal

10

S N = O 0o

9/30

Kernel Regression (I1)

> Let's consider gradient/derivative:
Val(d) = 2K KT 32K j+20 K -G = 2K - ([K+A-I]-a~)
> Solution for Vg(@) =0: @ = (K + X~ I)_1 :

> Hessian: VZ((@) = 2K - [K + X - I] is positive (semi-definite) = convex =

solution is optimal

10

S N = O 0o

[E——s
—yp=1

9/30

Classification

THE UNIVERSITY OF

SYDNEY

Classification

» Until now, we only considered regression problems with smooth outputs

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision?

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision? e.g. does this image show a cat or a
dog (or neither)?

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision? e.g. does this image show a cat or a
dog (or neither)?

Definition: Classification
Let X be some set and) be a finite set, i.e. Y ={1,...,L}.

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision? e.g. does this image show a cat or a
dog (or neither)?

Definition: Classification

Let X be some set and) be a finite set, i.e. Y = {1,...,L}. Further, let f be some
function from X to V.

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision? e.g. does this image show a cat or a
dog (or neither)?

Definition: Classification

Let X be some set and) be a finite set, i.e. Y = {1,...,L}. Further, let f be some
function from X to). Trying to infer f from example data is what we call a
classification problem.

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision? e.g. does this image show a cat or a
dog (or neither)?

Definition: Classification

Let X be some set and) be a finite set, i.e. Y = {1,...,L}. Further, let f be some
function from X to). Trying to infer f from example data is what we call a
classification problem.

3

11/30

Classification

» Until now, we only considered regression problems with smooth outputs

> What if my output y is a discrete decision? e.g. does this image show a cat or a
dog (or neither)?

Definition: Classification

Let X be some set and) be a finite set, i.e. Y = {1,...,L}. Further, let f be some
function from X to). Trying to infer f from example data is what we call a
classification problem.

3

11/30

Nearest Neighbor Classification (Cover and Hart 1967)

> Assign the output for the closest input

12/30

Nearest Neighbor Classification (Cover and Hart 1967)

> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

12/30

Nearest Neighbor Classification (Cover and Hart 1967)

> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

3

12/30

Nearest Neighbor Classification (Cover and Hart 1967)

> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

3

12/30

Nearest Neighbor Classification (Cover and Hart 1967)
> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

3

> Strong baseline in many classification problems (for a reasonable distance measure)

12/30

Nearest Neighbor Classification (Cover and Hart 1967)
> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

3

> Strong baseline in many classification problems (for a reasonable distance measure)

> straightforward extension: majority vote of k nearest neighbors

12 /30

(Cover and Hart 1967)

Nearest Neighbor Classification
> Assign the output for the closest input, i.e. fp(z) = y; where i = arg min; d(z, x;)

3
2+ 0 '}
. I
1 |
0 |
0 1 2 3 4 5 6 7 8
X

> Strong baseline in many classification problems (for a reasonable distance measure)

> straightforward extension: majority vote of k nearest neighbors

> possible extensions for metric learning (Weinberger and Saul 2009)
12/30

Smoothness in Classification

> Because) is discrete, a classifier f can never be smooth

13/30

Smoothness in Classification

> Because) is discrete, a classifier f can never be smooth

» but we can assume that f is generated as f(x) = arg max; ¢g;(x) for smooth
functions g; : X — R.

13/30

Smoothness in Classification

> Because) is discrete, a classifier f can never be smooth

» but we can assume that f is generated as f(x) = arg max; ¢g;(x) for smooth
functions g; : X — R.

3

13/30

Smoothness in Classification

> Because) is discrete, a classifier f can never be smooth

» but we can assume that f is generated as f(x) = arg max; ¢g;(x) for smooth
functions g; : X — R.

3

RiE=T ° ° © |
I ———

. o ° © - R

0 | | | ‘ | | |

13/30

Smoothness in Classification

> Because) is discrete, a classifier f can never be smooth

» but we can assume that f is generated as f(x) = arg max; ¢g;(x) for smooth

functions g; : X — R.

3 -
g1
2 --""92_ ° ° L —
= TiiitzeeszozoTTTTTTTTT

1" 6T ° o T N
0 | | | | | | |

0 1 2 3 4 5 6 7

T

13/30

Smoothness in Classification

> Because) is discrete, a classifier f can never be smooth

» but we can assume that f is generated as f(x) = arg max; ¢g;(x) for smooth
functions g; : X — R.

3

13/30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set ¢g;(z) = 0 and assume g3 is a kernel regression
function

14/30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - &

14/30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

14/30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

14/30

Support Vector Machine (Suykens and Vandewalle 1999)
> Consider only 2-class problems, set g(z) = 0 and assume g5 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

[e .
> 0 i
-1 o o o .
0 1 2 3 4 5 6 7 8

x

14/30

Support Vector Machine (Suykens and Vandewalle 1999)
> Consider only 2-class problems, set g(z) = 0 and assume g5 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

14 /30

Support Vector Machine (Suykens and Vandewalle 1999)
> Consider only 2-class problems, set g(z) = 0 and assume g5 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

T T T
1hH]---—-91 07T~ o----- o
____92 //
/
> 0p---------------- e et -
//
/
-1 @----0--__0 .
| | | | | | |

14 /30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

1,

14 /30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

1,

14/30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

1 -
> 0F
-1
| | | | | | |
0 1 2 3 4 5 6 7 8
x
» We impose the constraints: ga(x;) > 1 if y; =2 and ga(z;) < —1 if

yi=1

14 /30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

1,

» We impose the constraints: go(x;) > 1 —¢; if y; =2 and ga(z;) < —1+¢; if
yi=1

14 /30

Support Vector Machine (Suykens and Vandewalle 1999)

» Consider only 2-class problems, set g;(z) = 0 and assume g3 is a kernel regression
function, i.e. go(x) = k(z)T - @ +b

» Then, we wish to find the smoothest function g that still ensures a margin of
safety for classification:

1,

» We impose the constraints: go(x;) > 1 —¢; if y; =2 and ga(z;) < —1+¢; if

y; = 1 for slack variables ¢;
14/30

Support Vector Machine (Il)

> We obtain the optimization problem:

15/30

Support Vector Machine (Il)

> We obtain the optimization problem:

C &, 1
min -;6?+2&T‘K-d’
P

abe 2
s.t. Eg-&+b21—ei Vi:y;, =2
EZ-T'&—l—bS—l—!—ei Vi:y, =1

15/30

Support Vector Machine (Il)

> We obtain the optimization problem:

o 1

. 2 T -

f.E 2 gt K.

glé]% 5 i:1€l+206 a

st. (2. —3)- (kK -@a+b)>1—¢ Vi

15/30

Support Vector Machine (Il)

> We obtain the optimization problem:

N
. C 1_p .
glgré CRp e?+§a K -a
i=1
st G- (k] -d+b)>1—¢ Vi

15/30

Support Vector Machine (Il)

> We obtain the optimization problem:
N

. C L _p .
gléré CRp e?+§a K -a
i=1
s.t. gl(E?&+b)Zl—€Z Vi

» Nicer form via Wolfe dual (PaaRen 2019; Boyd and Vandenberghe 2004):
1 g 1 R
ngn 5% -(K—i—aI)'a—y -

N
s.t. Zozi =0 and a; -y >0 Vi
=1

15 /30

Support Vector Machine (Il)

> We obtain the optimization problem:

—

N
1r£ % Z f“T-K-a

s.t. yl(k:z d+b)>1—¢
» Nicer form via Wolfe dual (PaaRen 2019; Boyd and Vandenberghe 2004)

Vi

1
T-(K+51)-a—gT-*

R
min —a
a 2

N
Z a; = 0 and (67
=1

> problem is still convex, but constrained

;>0 Vi

15 /30

Support Vector Machine (Il)

> We obtain the optimization problem:
N

. C L _p .
gléré CRp e?+§a K -a
i=1
s.t. gl(E?&+b)Zl—€Z Vi

» Nicer form via Wolfe dual (PaaRen 2019; Boyd and Vandenberghe 2004):
1 g 1 R
ngn 5% -(K—i—aI) -a—y -
N
s.t. Zozi =0 and a; -y >0 Vi
i=1

> problem is still convex, but constrained = new techniques needed, esp. quadratic
programming

15 /30

Support Vector Machine (Il)

> We obtain the optimization problem:
N

. C L _p .
gléré CRp e?+§a K -a
i=1
s.t. gl(E?&+b)Zl—€Z Vi

» Nicer form via Wolfe dual (PaaRen 2019; Boyd and Vandenberghe 2004):
1 g 1 R
m&ln 5% -(K—|—6I) -a—y -
N
s.t. Zozi =0 and a; -y >0 Vi
i=1

> problem is still convex, but constrained = new techniques needed, esp. quadratic
programming

> Extensions to multiple classes by means of one-versus-one classification

15 /30

Unsupervised Learning

THE UNIVERSITY OF

SYDNEY

Unsupervised Learning

> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis)

17/30

Unsupervised Learning

> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis) = Learning is then called unsupervised

17/30

Unsupervised Learning
> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis) = Learning is then called unsupervised

» Mostly based on reconstruction or compression

17/30

Unsupervised Learning

> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis) = Learning is then called unsupervised

» Mostly based on reconstruction or compression

Reconstruction Principle

Let X be some set, p be a density on it, and d be a distance on that set.

17/30

Unsupervised Learning

> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis) = Learning is then called unsupervised

» Mostly based on reconstruction or compression

Reconstruction Principle

Let X be some set, p be a density on it, and d be a distance on that set. Our goal is to
find two models f: X — Y and f~!': Y — X for some “smaller” set)

17/30

Unsupervised Learning

> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis) = Learning is then called unsupervised

» Mostly based on reconstruction or compression

Reconstruction Principle

Let X be some set, p be a density on it, and d be a distance on that set. Our goal is to
find two models f : X — Y and f~!: Y — X for some “smaller’ set), such that

brec(f, f /d Z f))) -p(z)dx

is as small as possible. We call ¢, the reconstruction loss.

17/30

Unsupervised Learning

> In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis) = Learning is then called unsupervised

» Mostly based on reconstruction or compression

Reconstruction Principle

Let X be some set, p be a density on it, and d be a distance on that set. Our goal is to
find two models f : X — Y and f~!: Y — X for some “smaller’ set), such that

1 N -1 2
el 1.5 = [l @) pla)dn 3 3 i S F(2)

is as small as possible. We call ¢, the reconstruction loss.

17/30

Example: Constant Coding

> |dea: We compress every point to a constant: f(Z) =¢

18/30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢

18/30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7

18/30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

N=
=
—
=l
\
S

[N}

=1

N
Velree =y 2(€— ;)
i=1

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

N=
=
—
=l
\
S

[N}

=1

N
Velree =Y 2(¢— ;) =0
=1

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

N=
=
—
=l
\
S

[N}

=1

oy
I
=i
.MZ
a1

&
I
—

N
Velee =Y 2@~ T)=0 =
=1

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

N=
=
—
=
\
S

[N}

=1

|

N
Velree = Y 2(E— ;) =0 —
=1

oy
I
=i
.MZ
a1

@
I
—

@

18 /30

Example: Constant Coding

> Idea: We compress every point to a constant: f(¥) =cand f~1(c) =¢
» What is the best constant ¢7 = Minimize reconstruction loss

N=
=
—
=
\
S

[N}

=1

|

N
Velree = Y 2(E— ;) =0 —
=1

oy
I
=i
.MZ
a1

@
I
—

@

18 /30

Example: Constant Coding

» Idea: We compress every point to a constant: f(#) = ¢and f~1(¢) =
» What is the best constant ¢7 = Minimize reconstruction loss

N
min Z (fl - 5)2
Z;;l | 1 N
Velee =) 2@0-5)=0 = =5 1
=1 =1
o\ /O
/8704/0
o\

18/30

Dimensionality Reduction

THE UNIVERSITY OF

SYDNEY

Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
well

20/30

Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
well

> More precisely: f(Z) =W - (7 —) and F~YJ) = V - f + b with parameters
W e R™" V € R"™™ and b

20/30

Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
well

> More precisely: f(Z) =W - (7 — l;) and fL() =V -5+ b with parameters
W e R™*" V ¢ R"™™ and b € R”

» Derivation is, sadly, out of scope (refer to e.g. Bishop (2006) instead)

20/30

Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
well

> More precisely: f(Z) =W - (7 — l;) and fL() =V -5+ b with parameters
W e R™*" V ¢ R"™™ and b € R”

» Derivation is, sadly, out of scope (refer to e.g. Bishop (2006) instead)

> Key points: b is the data mean; W are eigenvectors of the data covariance matrix
corresponding to the largest eigenvalues; V. = W7

20/30

Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
well

> More precisely: f(Z) =W - (7 — l;) and fL() =V -5+ b with parameters
W e R™*" V ¢ R"™™ and b € R”

» Derivation is, sadly, out of scope (refer to e.g. Bishop (2006) instead)

> Key points: b is the data mean; W are eigenvectors of the data covariance matrix
corresponding to the largest eigenvalues; V. = W7

57 T T T T T T T \O) ‘(D
e & °©
S e £ oA’ *
51 © 80&%()) B
=1 -

10 8 6 —4 -2 0 2 4 6 8 10 .

Principal Component Analysis (Pearson 1901; Bishop 2006)

> |dea: Find a linear function f : R™ — R™ with m < n that reconstructs points
well

> More precisely: f(Z) =W - (7 — l;) and fL() =V -5+ b with parameters
W e R™*" V ¢ R"™™ and b € R”

» Derivation is, sadly, out of scope (refer to e.g. Bishop (2006) instead)

> Key points: b is the data mean; W are eigenvectors of the data covariance matrix
corresponding to the largest eigenvalues; V. = W7

5,

-10 -8 8 20/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained

21/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained
)2
> High-dimensional closeness of j to i: pj; = exp (— %d(x;if]))

3

21/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained
2 .
> High-dimensional closeness of j to i: pj; = exp (— %d(x;if])) normalize by sum
over all j

21/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained
)2
> High-dimensional closeness of j to i: pj; = exp (— %d(x;if])) normalize by sum

i

over all j; symmetrize as p; j = ﬁ(pj\i + pijj)

21/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained
)2
> High-dimensional closeness of j to i: pj; = exp (— %d(x;if])) normalize by sum

i

over all j; symmetrize as p; j = ﬁ(pj\i + pijj)

» Low-dimensional closeness: ¢; ; = 1/(1 + deuc(yi,yj)Q)

21/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained
)2
> High-dimensional closeness of j to i: pj; = exp (— %d(xzfif])) normalize by sum

3

over all j; symmetrize as p; j = ﬁ(pj‘i + pijj)
» Low-dimensional closeness: ¢; ; = 1/(1 + deuc(yi,yj)Q)

> Loss function: Kullback-Leibler divergence:

N N
kL@, -5 N) = > pij - log (]L)

(]
i=1 j=1 i

21/30

t-SNE (Van der Maaten and Hinton 2008)

» Idea: Find low-dimensional points i, ...,y directly, such that closeness is
maintained

. 1d(xi7xj)2 . .
> High-dimensional closeness of j to i: p;j; = exp (— 5 =232); normalize by sum

3

over all j; symmetrize as p; j = ﬁ(pj‘i + pijj)
» Low-dimensional closeness: ¢; ; = 1/(1 + deuc(yi,yj)Q)

> Loss function: Kullback-Leibler divergence:

N N
kL@, -5 N) = > pij - log (ZL)

(]
i=1 j=1 i

» Optimization via gradient descent/related methods

21/30

t-SNE (Van der Maaten and Hinton 2008)

>

| 4

Idea: Find low-dimensional points 41, ..., %N directly, such that closeness is
maintained

. 1d(zi@;)?N . :
High-dimensional closeness of j to i: pjj; = exp (— 5= -2~); normalize by sum

3

over all j; symmetrize as p; j = ﬁ@j\i + pijj)

» Low-dimensional closeness: ¢; ; = 1/(1 + deuc(yi,yj)Q)

> Loss function: Kullback-Leibler divergence:

N N
k(s UN) = Zzpz}j -log (L)

(]
i=1 j=1 i

» Optimization via gradient descent/related methods

» Challenge: Extending map to new data points; refer e.g. to Gisbrecht, Schulz, and

Hammer (2015)

21/30

PCA versus t-SNE example

Y2

40

20

—20

—40

t-SNE
T T T
&
i & ®
e @
)
&
| | | | |
—40 —-20 O 20 40
Y1

22/30

Notes on PCA versus t-SNE

Rules of thumb:

» PCA is very fast and easily applicable to new data; very useful e.g. as
pre-processing for big data

23/30

Notes on PCA versus t-SNE

Rules of thumb:

» PCA is very fast and easily applicable to new data; very useful e.g. as
pre-processing for big data

» t-SNE is better suited for visualizations and insight; especially for clustered data

23/30

Notes on PCA versus t-SNE

Rules of thumb:
» PCA is very fast and easily applicable to new data; very useful e.g. as
pre-processing for big data

» t-SNE is better suited for visualizations and insight; especially for clustered data

» Evaluating the quality of dimensionality reduction is difficult, refer e.g. to Mokbel
et al. (2013)

23/30

Clustering

THE UNIVERSITY OF

SYDNEY

Single-linkage clustering (Sibson 1973)

> |dea: Represent data points by a cluster index: f(z) € {1,...,L}

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to
each other

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to
each other

Y
® o

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to
each other

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to
each other

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
o
®-0
2 e
(&)
® o

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
o
®-0
e
(&)
® o

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
o
®-0
e
(&)
oo

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
()
e
“‘
£
()
o9

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
()
e
“‘
£
()
o9

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
(O]
.H‘H“Q‘/
(@)
f e
()
o9

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
(O]
.H‘H“Q‘/
£
()
O«»Q/

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
()
.H‘H.‘Q‘/
£e
()}
O*H»Q/

» Provides not only clusters but a dendrogram / “evolutionary tree”

25 /30

Single-linkage clustering (Sibson 1973)

> I|dea: Represent data points by a cluster index: f(x) € {1,...,L}, f~1(I) =?
» Algorithm: Start with one cluster per point, then merge clusters that are closest to

each other
()
QHOHO‘O/
Fe
@)
OﬂQ/

» Provides not only clusters but a dendrogram / “evolutionary tree”

> Precise behavior depends on the definition of cluster closeness (Ward 1963)

25 /30

K-means C|ustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
Ee{l,...,K}

26 /30

K-means C|ustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K} f (@) = @

26 /30

K-means C|ustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K} f (@) = @

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

26 /30

K-means C|ustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K} f (@) = @

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

O

o
o © O

26 /30

K-means C|ustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K} f (@) = @

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

O

o
o © O

26 /30

K-means clustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

©)
.N. assignment step

/'/0

26 /30

K-means clustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

©)

O o % \ mean step
%)

Ko

~
(@}

26 /30

K-means clustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

o

5 \ assignment step
\\g‘\ %}\O

~
(@}

@

e

26 /30

K-means clustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

@
o

(

O
o ©O @
O} ! mean step
P
@
@

26 /30

K-means C|u5tering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

? © \ assignment ste
/ g p
0 Qx

f

\ e

26 /30

K-means clustering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

® \ mean step

26 /30

K-means C|u5tering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

..-\\\::§ ‘V
QQO
()//r
@

assignment step

26 /30

K-means C|u5tering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K}, f-1(i) — i

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

o "

mean step

@

A

O/

@

9]

26 /30

K-means C|UStering (Hartigan and Wong 1979)

» Idea: Represent data points by a prototype: f(z) = @y € R™ with
ke L. K} f (@) = @

> lteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

o "

@

mean step

@

A

O/”

@
&)

» Simple and fast, but sensitive to initialization

26 /30

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes

27/30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:

Vkli = eXP(—%) for ranks 7); and decreasing A

27 /30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:

Tkl|i

Yji = exp(——)/Z{il exp(—%) for ranks 7); and decreasing A

27/30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:

Tkl|i

Yji = exp(——)/Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
point

27 /30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:

Tkl|i

Yji = exp(——)/Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
. - N S N
point: Wy = D i1y Vrji - Ti/ Dim1 Vkli

27 /30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:

Vil = exp(—r’;\‘i)/ Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
. o &N S N
point: Wy = D i1y Vrji - Ti/ Dim1 Vkli

= Works solely based on pairwise distances

27 /30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:

Tkl|i

Yili = exp(——)/Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
2 N S N
point: Wx = D ;1) Vi - Tif Doim1 Vili
— Works solely based on pairwise distances; let D? be matrix of pairwise squared
. o N
distances and @ = (Vi|1,- - VkIN)/ Dot Vil

27 /30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:
Vii = exp(—r’;\‘i)/ Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
] N S N
point: Wy = D i1y Vrji - Ti/ Dim1 Vkli
— Works solely based on pairwise distances; let D? be matrix of pairwise squared
. o N
distances and . = (Vg|1,-- - Vk|N)/ 2oim1 Vkli then:

1 "
d(z wk Za/”- x, :L'l iak'DQ ;‘g

27 /30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Relational Neural Gas (Hammer and Hasenfuss 2010)

> |dea 1: Assign data points “softly” to multiple prototypes:
Vii = exp(—r’;\‘i)/ Z{il exp(—%) for ranks 7); and decreasing A

> |dea 2: prototypes can always be represented as convex combinations of data
] N S N
point: Wy = D i1y Vrji - Ti/ Dim1 Vkli
— Works solely based on pairwise distances; let D? be matrix of pairwise squared
. o N
distances and . = (Vg|1,-- - Vk|N)/ 2oim1 Vkli then:

1 "
d(z wk Za/”- x, :L'l iak'DQ ;‘g

> Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27/30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

Summary

THE UNIVERSITY OF

SYDNEY

Classic Tasks in Machine Learning

Machine Learning

29 /30

Classic Tasks in Machine Learning

Machine Learning

Supervised Learning

N

-

Unsupervised Learning

20/30

Classic Tasks in Machine Learning

Machine Learning
Supervised Learning Unsupervised Learning
Regression
Classification

20/30

Classic Tasks in Machine Learning

Machine Learning
Supervised Learning Unsupervised Learning
Regression Dimensionality Reduction
Classification Clustering

20/30

Classic Tasks in Machine Learning

Machine Learning

Supervised Learning

N

Unsupervised Learning

Regression

contin

uous
Dimensionality Reduction

Classification

dis

Crete

Clustering

29 /30

So you want to do Machine Learning?

Do you have data?

No

Don't do ML

30/30

So you want to do Machine Learning?

Do you have data?

No

Can you record data?

No

Don't do ML

30/30

So you want to do Machine Learning?

Do you have data? i» Do you have outputs?

Y
No es

Can you record data?

No

Don't do ML

30/30

So you want to do Machine Learning?

Do you have data? i» Do you have outputs?

No ves Nol
Can you record data? Do you have a domain expert?
No
Don't do ML

30/30

So you want to do Machine Learning?

Do you have data? i» Do you have outputs?

Y
No es Nol

Can you record data? Do you have a domain expert?

N
No /

Don't do ML

30/30

So you want to do Machine Learning?

Y
Do you have data? ™ Do you have outputs?

Yes
No No

Can you record data? Do you have a domain expert?

No es
No / y
Try dim. red. or clustering;

Don’t do ML Interpret results with expert
and try again

30/30

So you want to do Machine Learning?

Yes
Do you have data? ———— Do you have outputs? —— How much data?

No

Can you record data?

Don't do ML

Yes

No

Do you have a domain expert?

No es
No / y
Try dim. red. or clustering;

Interpret results with expert
and try again

30/30

So you want to do Machine Learning?

Y yes
Do you have data? — T, Do you have outputs? ——— How much data?

v .
No es No < 10k points
or non-standard data

Can you record data? Do you have a domain expert? Try SVM or kernel regression

No es
No / y
Try dim. red. or clustering;

Don’t do ML Interpret results with expert
and try again

30/30

So you want to do Machine Learning?

Y yes
Do you have data? — T, Do you have outputs? ——— How much data?

v .
No es No < 10k points
or non-standard data

Can you record data? Do you have a domain expert? Try SVM or kernel regression

> 10k points
No y yes image or language data
Try dim. red. or clustering;

) . Try a pre-trained
Don’t do ML Interpret results with expert y a prewt
. deep learning model
and try again

30/30

Literature

THE UNIVERSITY OF

SYDNEY

Literature |

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning.
Berlin/Heidelberg, Germany: Springer. ISBN: 0387310738.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge,
UK: Cambridge University Press. URL:
http://web.stanford.edu/ boyd/cvxbook/.

Cover, Thomas M. and Peter E. Hart (1967). “Nearest neighbor pattern classification”.
In: IEEE Transactions on Information Theory 13.1, pp. 21-27. DOI:
10.1109/TIT.1967.1053964.

Gisbrecht, Andrej, Alexander Schulz, and Barbara Hammer (2015). “Parametric
nonlinear dimensionality reduction using kernel t-SNE". In: Neurocomputing 147,
pp. 71-82. DOI: 10.1016/j .neucom.2013.11.045.

Hammer, Barbara and Alexander Hasenfuss (2010). “Topographic Mapping of Large
Dissimilarity Data Sets”. In: Neural Computation 22.9, pp. 2220-2284.

32/30

http://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/j.neucom.2013.11.045

Literature Il

Hartigan, J. A. and M. A. Wong (1979). “Algorithm AS 136: A K-Means Clustering
Algorithm”. In: Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28.1, pp. 100-108. DOI: 10.2307/2346830.

Mokbel, Bassam et al. (2013). “Visualizing the quality of dimensionality reduction”. In:

Neurocomputing 112, pp. 109-123. DOI: 10.1016/j .neucom.2012.11.046.

Paalen, Benjamin (2019). Lecture Notes on Applied Optimization. Bielefeld
University. URL: https://pub.uni-bielefeld.de/record/2935200

Pearson, Karl (1901). “LII. On lines and planes of closest fit to systems of points in
space’. In: The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 2.11, pp. 559-572. DOI: 10.1080/14786440109462720.

Rasmussen, Carl Edward and Christopher K. |. Williams (2005). Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning).
Cambridge, MA, USA: The MIT Press.

33/30

https://doi.org/10.2307/2346830
https://doi.org/10.1016/j.neucom.2012.11.046
https://pub.uni-bielefeld.de/record/2935200
https://doi.org/10.1080/14786440109462720

Literature Il

Sibson, R. (1973). “SLINK: An optimally efficient algorithm for the single-link cluster
method”. In: The Computer Journal 16.1, pp. 30-34. DOI:
10.1093/comjnl/16.1.30.

Suykens, J.AK. and J. Vandewalle (1999). “Least Squares Support Vector Machine
Classifiers". In: Neural Processing Letters 9.3, pp. 293-300. DOI:
10.1023/A:1018628609742.

Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing Data using t-SNE".
In: Journal of Machine Learning Research 9, pp. 2579-2605. URL:
http://www. jmlr.org/papers/v9/vandermaaten08a.html.

Ward, Joe (1963). “Hierarchical Grouping to Optimize an Objective Function”. In:
Journal of the American Statistical Association 58.301, pp. 236-244. DOI:
10.1080/01621459.1963.10500845.

34/30

https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1023/A:1018628609742
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1080/01621459.1963.10500845

Literature IV

Weinberger, Kilian Q. and Lawrence K. Saul (2009). “Distance Metric Learning for
Large Margin Nearest Neighbor Classification”. In: Journal of Machine Learning
Research 10, pp. 207-244. URL:
http://www.jmlr.org/papers/v10/weinberger09a.html.

35/30

http://www.jmlr.org/papers/v10/weinberger09a.html

	Regression
	Classification
	Unsupervised Learning
	Dimensionality Reduction
	Clustering
	Summary
	Literature
	References

