Introduction to Machine Learning

Session 3: Artificial Neural Networks

Benjamin PaaBen
The University of Sydney

IK 2020, Giinne

THE UNIVERSITY OF

SYDNEY

1/41


https://creativecommons.org/licenses/by-sa/3.0

Motivation: Learning on difficult data

» How to do ML for image and language data?

2/41



Motivation: Learning on difficult data

» How to do ML for image and language data?

» Unclear features, big data, long-range dependencies, much noise

2/41



Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

2/41



Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

2/41



Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

» This pipeline should support multiple layers of abstraction (deep learning;
LeCun, Bengio, and Hinton 2015)

2/41



Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

» This pipeline should support multiple layers of abstraction (deep learning;
LeCun, Bengio, and Hinton 2015)

> Neural nets are currently the best way to do that

2/41



Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
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> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

» This pipeline should support multiple layers of abstraction (deep learning;
LeCun, Bengio, and Hinton 2015)

» Neural nets are currently the best way to do that (and everything that does it has
been dubbed a neural net)
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n y=o(Cjwj- ;) =o(w’ -7

I

weight multiplication
“synapses”

> Very loose relation to biology, if any

» For (most) MLers, artificial neurons are engineering tools, i.e. a set of re-usable
components to build model architectures for ML problem solving
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Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

short notation
X1

w1
@ﬁ%y W)
(s {1 ifs>0 %nv

Tn
0 otherwise

y = hvy(a” - 7)
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> |t is easy to show that McCulloch and Pitts (1943) networks can compute every
logical function by decomposing it into elementary blocks (or, and, not)

» Highly influential in computer science via Von Neumann (1945) architecture
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> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

@—>—> y= sign(a” - 7)

{+1 ifs>0

sign(s
8 —1 otherwise

> Loss function: lperc(W) = ZZ L ReLU( — @” - &; - y;) with ReLU(s) = max{s,0}

» Learning via stochastic gradient descent from each sample (Z;, y;):

if wl - T ~y; < 0
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Perceptron Learning Example
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» Provably finds a solution with zero error if one exists!

» but even some simple problems, like XOR, remain unsolvable (Minsky and Papert
1969; Olazaran 1996)
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» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

» Sparked considerable hype

> Limitations were known early on but solvable by multiple layers - just a multi-layer
learning rule was missing

» Success of digital computing and symbolic Al almost killed Perceptron research in
the late 60s, yet some in the field persisted
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> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,xy,), where f is some function and
ui, ..., U, are the incoming nodes of v

» : _ .2
Example: Ty, = T2

=
T, = const\;@%;g(xwl) T,

“input’ “output”

LTy = =4z,
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Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

0z, 0Ly  Oxy

0xy, 7w %; 0xy, .wa
where Nt (u) are the outgoing nodes of u

» Example in our graph above:

0ry  Oxy, Oy 0%y, Oxy

= . =2-z
0%y 0xy Oy, 0xy Oy, v Ty

(Tuwy )

> We can use this formula recursively to compute derivatives from any descendant
nodes, e.g. the derivative of the loss w.r.t. weights

» That is the main utility of frameworks like tensorflow and pytorch!
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Activation functions

» But how to make artificial neurons differentiable?
with a differentiable surrogate

logistic/sigmoid

1 I I
0.5 -
= 0 :
“—
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-1 | | |
—4-20 2 4
x
1
f) = 1+ exp(—x)
0

tanh

= replace threshold function

RelLU

—-1-0.50 0.5 1

T

f(z) = max{0,z}

0 1 ifz>0
f(m)_{o if2 <0
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Example: Cosine-to-Sine prediction
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Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a
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Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a @

moving window @
\\Egi\*

> Weights are shared across time steps

: o L Wi
» Usually multiple convolutions in parallel y@
and stacked
K

» Especially useful for 2D (images) or 3D - X
(video; voxels) data hj = U(Zk:1 Wk - 33j+k—1)
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2D Example

X 1%% Y
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> Strongly related to image filters (edge detection, sharpen, Gaussian blur, etc.)
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Recent innovations and tricks

| 2

| 4

GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

Max Pooling: Take the maximum value over region after convolution layer for
more shift-invariance and rapid size reduction (Jarrett et al. 2009)

Use really big datasets (Deng et al. 2009; Krizhevsky, Sutskever, and Hinton
2012)

Dropout: During training, randomly disable neurons to force feature independence
(Srivastava et al. 2014)

Batch normalization: Ensure similar range for features (loffe and Szegedy 2015)
Residual Nets: Add layer input to layer output for 'shortcuts’ in the gradient and

separation of concerns (He et al. 2016)
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2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v
perceptron layer
3. use residual connections and dropout or batch v
normalization if needed ReLU
4. Between each layer, apply nonlinearity, e.g. ReLU Y
5. Apply regression loss, e.g. RMSE v
6. Apply an optimizer, e.g. ADAM, until loss is very low perceptron layer
v
7. Use weight decay if needed RMSE
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» Method for dimensionality reduction

> Same recipe as regression for first half, resulting in mean
vector i and standard deviation vector &

» Generate low-dimensional representation as
= i +€® & for random normal noise €

» Use an inverse regressor to decode back to input

» Loss:
tuse(input, input') + 3 (" - ji + S, 0f — log[o7))

> Note: Loss is very likely to fluctuate due to randomness
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» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)
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F = log [9(a)] = Yozlog [1 - g(f(2))]

real data
» Very versatile architecture (not limited to data types or neural nets)
> But: Notoriously hard to train! E.g.: Imbalanced learning speed of generator and
discriminator, generator only does exact copies, generator looses variance
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Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes
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» Perform lots of soundness check early on; monitor your progress well
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