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Recap: What is Machine Learning?

I There is a ’true’ data generating process y = f(x) + ε

, from which we only see a
sample D = {(x1, y1), . . . , (xN , yN )}

I We learn a rule fD from that sample

(that’s the machine learning part)

I . . . that hopefully generalizes to the entire ground truth distribution

, i.e.:
fD(x) ≈ f(x) for all x
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Smoothness assumption
I Question: When can we hope to generalize at all?

I Idea: If the ’true’ function f is smooth

Definition
We call a function f smooth if x being close to x′ implies that f(x) is close to f(x′).
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Distance
I Smoothness is closely related to notions of distance

, i.e. f is smooth if small
distance in input implies small distance in output

Definition
Let X be some set.

A function d : X × X → R is called a distance if for all
x, x′, x′′ ∈ X it holds:

d(x, x′) ≥ 0 Non-Negativity
d(x, x′) = 0 ⇐⇒ x = x′ Self-Identity
d(x, x′) = d(x′, x) Symmetry

d(x, x′) + d(x′, x′′) ≥ d(x, x′′) Triangular Inequality

I Idea: Use distances as interface to the data with key principle: Low distance
means similar prediction

I Note: Almost all algorithms implemented in scikit-learn.org
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Examples of Distances

Euclidean Distance

~x

~x′

d(x, x′) =
√
(~x− ~x′)T · (~x− ~x′)

=
√∑n

j=1(xj − x′j)2

Shortest Path Distance

Osnabrück

Bielefeld
Münster

Hamm
Soest

Paderborn

d(x, x′) = min
x1,...,xT

x1=x,xT=x′

(xt,xt+1)∈E

∑T−1
t=1 w(xt, xt+1)

String Edit Distance

bla

blu

blub

rep(a,u)

ins(b)

d(x, x′) = min
δ1,...,δT

δT ◦...◦δ1(x)=x′
T
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Regression



Nearest Neighbor Regression

I Assign the output for the closest input

, i.e. fD(x) = yi where i = argmini d(x, xi)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

x

y

I Not a smooth model, but ’approaching smoothness’ for enough data
I straightforward extension: average of k nearest neighbors
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Kernel regression (aka Gaussian Processes) (Rasmussen and Williams 2005)

I Idea: Average predictions based on closeness:

fD(x) =

N∑
i=1

k(x, xi) · αi = ~k(x)T · ~α

where k : X × X → R measures closeness and αi is the ith prediction

I For us, k is always the Gaussian or RBF kernel with hyper-parameter ψ ∈ R+:

k(x, x′) = exp
(
− 1

2
· d(x, x

′)2

ψ2

)

I As loss, we use the regularized squared error as for linear regression:

`(~α) =

N∑
i=1

(
~ki · ~α− yi

)2
+ λ · ~αT ·K · ~α

where Ki,j = k(xi, xj) and ~ki is the ith column of K
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Kernel Regression (II)
I Let’s consider gradient/derivative:

∇~α`(~α) =

I Solution for ∇~α`(~α) = 0: ~α =
(
K + λ · I

)−1 · ~y
I Hessian: ∇2

~α`(~α) = 2K ·
[
K + λ · I

]
is positive (semi-definite)

⇒ convex ⇒
solution is optimal

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

x

y
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Classification



Classification
I Until now, we only considered regression problems with smooth outputs

I What if my output y is a discrete decision?

e.g. does this image show a cat or a
dog (or neither)?

Definition: Classification
Let X be some set and Y be a finite set, i.e. Y = {1, . . . , L}.

Further, let f be some
function from X to Y. Trying to infer f from example data is what we call a
classification problem.
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Nearest Neighbor Classification (Cover and Hart 1967)

I Assign the output for the closest input

, i.e. fD(x) = yi where i = argmini d(x, xi)
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y

I Strong baseline in many classification problems (for a reasonable distance measure)

I straightforward extension: majority vote of k nearest neighbors

I possible extensions for metric learning (Weinberger and Saul 2009)
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Smoothness in Classification

I Because Y is discrete, a classifier f can never be smooth

I but we can assume that f is generated as f(x) = argmaxl gl(x) for smooth
functions gl : X → R.
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Support Vector Machine (Suykens and Vandewalle 1999)

I Consider only 2-class problems, set g1(x) = 0 and assume g2 is a kernel regression
function

, i.e. g2(x) = ~k(x)T · ~α

+ b

I Then, we wish to find the smoothest function g2 that still ensures a margin of
safety for classification:
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I We impose the constraints: g2(xi) ≥ 1

− εi

if yi = 2 and g2(xi) ≤ −1

+ εi

if
yi = 1

for slack variables εi
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Support Vector Machine (II)
I We obtain the optimization problem:

min
~α,b,~ε

C

2
·
N∑
i=1

ε2i +
1

2
~αT ·K · ~α

I Nicer form via Wolfe dual (Paaßen 2019; Boyd and Vandenberghe 2004):

min
~α

1

2
~αT ·

(
K +

1

C
I
)
· ~α− ỹT · ~α

s.t.
N∑
i=1

αi = 0 and αi · ỹi ≥ 0 ∀i

I problem is still convex, but constrained

⇒ new techniques needed, esp. quadratic
programming

I Extensions to multiple classes by means of one-versus-one classification
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· ~α− ỹT · ~α

s.t.
N∑
i=1

αi = 0 and αi · ỹi ≥ 0 ∀i
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Unsupervised Learning

I In many settings, we do not actually have ground truth examples for the output
(e.g. exploratory data analysis)

⇒ Learning is then called unsupervised

I Mostly based on reconstruction or compression

Reconstruction Principle

Let X be some set, p be a density on it, and d be a distance on that set.

Our goal is to
find two models f : X → Y and f−1 : Y → X for some “smaller” set Y, such that

`rec(f, f
−1) =

∫
d
(
x, f−1(f(x))

)2 · p(x)dx

≈ 1

N

N∑
i=1

d
(
xi, f

−1(f(x)
)2

is as small as possible. We call `rec the reconstruction loss.
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Example: Constant Coding
I Idea: We compress every point to a constant: f(~x) = ~c

and f−1(~c) = ~c
I What is the best constant ~c?

⇒ Minimize reconstruction loss

min
~c

N∑
i=1

(
~xi −

)2

∇~c`rec =
N∑
i=1

2(~c− ~xi)

!
= 0

⇐⇒ ~c =
1

N

N∑
i=1

~xi

~c
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Dimensionality Reduction



Principal Component Analysis (Pearson 1901; Bishop 2006)

I Idea: Find a linear function f : Rn → Rm with m� n that reconstructs points
well

I More precisely: f(~x) = W · (~x−~b) and f−1(~y) = V · ~y +~b with parameters
W ∈ Rm×n, V ∈ Rn×m, and ~b ∈ Rn

I Derivation is, sadly, out of scope (refer to e.g. Bishop (2006) instead)

I Key points: ~b is the data mean; W are eigenvectors of the data covariance matrix
corresponding to the largest eigenvalues; V = W T
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t-SNE (Van der Maaten and Hinton 2008)

I Idea: Find low-dimensional points ~y1, . . . , ~yN directly, such that closeness is
maintained

I High-dimensional closeness of j to i: pj|i = exp
(
− 1

2
d(xi,xj)

2

σ2
i

)

; normalize by sum

over all j; symmetrize as pi,j = 1
2·N (pj|i + pi|j)

I Low-dimensional closeness: qi,j = 1/
(
1 + deuc(yi, yj)

2
)

I Loss function: Kullback-Leibler divergence:

`KL(~y1, . . . , ~yN ) =
N∑
i=1

N∑
j=1

pi,j · log
(pi,j
qi,j

)
I Optimization via gradient descent/related methods

I Challenge: Extending map to new data points; refer e.g. to Gisbrecht, Schulz, and
Hammer (2015)
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PCA versus t-SNE example
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Notes on PCA versus t-SNE

Rules of thumb:
I PCA is very fast and easily applicable to new data; very useful e.g. as

pre-processing for big data

I t-SNE is better suited for visualizations and insight; especially for clustered data

I Evaluating the quality of dimensionality reduction is difficult, refer e.g. to Mokbel
et al. (2013)
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Clustering



Single-linkage clustering (Sibson 1973)

I Idea: Represent data points by a cluster index: f(x) ∈ {1, . . . , L}

, f−1(l) =?
I Algorithm: Start with one cluster per point

, then merge clusters that are closest to
each other

I Provides not only clusters but a dendrogram / “evolutionary tree”

I Precise behavior depends on the definition of cluster closeness (Ward 1963)
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K-means clustering (Hartigan and Wong 1979)

I Idea: Represent data points by a prototype: f(x) = ~wk ∈ Rn with
k ∈ {1, . . . ,K}

, f−1(~wk) = ~wk

I Iteratively assign datapoints to prototypes and prototypes to data means to
minimize reconstruction loss

assignment stepmean stepassignment stepmean stepassignment stepmean stepassignment stepmean step

I Simple and fast, but sensitive to initialization
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Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes

:
γk|i = exp(− rk|i

λ )

/
∑K

l=1 exp(−
rl|i
λ )

for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point

: ~wk =
∑N

i=1 γk|i · ~xi/
∑N

i=1 γk|i

⇒ Works solely based on pairwise distances

; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )

/
∑K

l=1 exp(−
rl|i
λ )

for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point

: ~wk =
∑N

i=1 γk|i · ~xi/
∑N

i=1 γk|i

⇒ Works solely based on pairwise distances

; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point

: ~wk =
∑N

i=1 γk|i · ~xi/
∑N

i=1 γk|i

⇒ Works solely based on pairwise distances

; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point

: ~wk =
∑N

i=1 γk|i · ~xi/
∑N

i=1 γk|i

⇒ Works solely based on pairwise distances

; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point: ~wk =

∑N
i=1 γk|i · ~xi/

∑N
i=1 γk|i

⇒ Works solely based on pairwise distances

; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point: ~wk =

∑N
i=1 γk|i · ~xi/

∑N
i=1 γk|i

⇒ Works solely based on pairwise distances

; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point: ~wk =

∑N
i=1 γk|i · ~xi/

∑N
i=1 γk|i

⇒ Works solely based on pairwise distances; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i

; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point: ~wk =

∑N
i=1 γk|i · ~xi/

∑N
i=1 γk|i

⇒ Works solely based on pairwise distances; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Relational Neural Gas (Hammer and Hasenfuss 2010)

I Idea 1: Assign data points “softly” to multiple prototypes:
γk|i = exp(− rk|i

λ )/
∑K

l=1 exp(−
rl|i
λ ) for ranks rk|i and decreasing λ

I Idea 2: prototypes can always be represented as convex combinations of data
point: ~wk =

∑N
i=1 γk|i · ~xi/

∑N
i=1 γk|i

⇒ Works solely based on pairwise distances; let D2 be matrix of pairwise squared
distances and ~αk = (γk|1, . . . , γk|N )/

∑N
i=1 γk|i; then:

d(x,wk)
2 =

N∑
i=1

αk,i · d(x, xi)2 −
1

2
~αk ·D2 · ~αTk

I Reference implementation:
https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml

27 / 30

https://gitlab.ub.uni-bielefeld.de/bpaassen/proto-dist-ml


Summary



Classic Tasks in Machine Learning

Machine Learning

Supervised Learning Unsupervised Learning

Regression

Classification

Dimensionality Reduction

Clustering

continuous

discrete
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So you want to do Machine Learning?

Do you have data?

Don’t do ML

No

Can you record data?

No

No

Do you have outputs?Yes

Yes

Do you have a domain expert?

No

No

Try dim. red. or clustering;
Interpret results with expert
and try again

yes

How much data?
yes

Try SVM or kernel regression

< 10k points
or non-standard data

Try a pre-trained
deep learning model

≥ 10k points
image or language data
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