Introduction to Machine Learning

Session 3: Artificial Neural Networks

Benjamin PaaBen
The University of Sydney

IK 2020, Giinne

THE UNIVERSITY OF

SYDNEY

1/41

https://creativecommons.org/licenses/by-sa/3.0

Motivation: Learning on difficult data

» How to do ML for image and language data?

2/41

Motivation: Learning on difficult data

» How to do ML for image and language data?

» Unclear features, big data, long-range dependencies, much noise

2/41

Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

2/41

Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

2/41

Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

» This pipeline should support multiple layers of abstraction (deep learning;
LeCun, Bengio, and Hinton 2015)

2/41

Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

» This pipeline should support multiple layers of abstraction (deep learning;
LeCun, Bengio, and Hinton 2015)

> Neural nets are currently the best way to do that

2/41

Motivation: Learning on difficult data

» How to do ML for image and language data?

> Unclear features, big data, long-range dependencies, much noise = classic ML
methods fail and/or require a lot of manual feature engineering

> We would like to specify a rough architecture for the entire input-to-output
pipeline and learn all parameters along that pipeline (end-to-end learning)

» This pipeline should support multiple layers of abstraction (deep learning;
LeCun, Bengio, and Hinton 2015)

» Neural nets are currently the best way to do that (and everything that does it has
been dubbed a neural net)

2/41

What is an 'artificial neuron’? (1)

Brain neuron nerves cell by OpenClipart-Vectors-30363; usage according to pixabay license

3/41

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/
https://pixabay.com/users/OpenClipart-Vectors-30363/
https://pixabay.com/service/license/

What is an 'artificial neuron’? (1)

dendrites / “inputs”

Brain neuron nerves cell by OpenClipart-Vectors-30363; usage according to pixabay license

3/41

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/
https://pixabay.com/users/OpenClipart-Vectors-30363/
https://pixabay.com/service/license/

What is an 'artificial neuron’? (1)

dendrites / “inputs”

soma / “combination”

Brain neuron nerves cell by OpenClipart-Vectors-30363; usage according to pixabay license

3/41

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/
https://pixabay.com/users/OpenClipart-Vectors-30363/
https://pixabay.com/service/license/

What is an 'artificial neuron’? (1)

dendrites / “inputs”

axon / “output”

soma / “combination”

Brain neuron nerves cell by OpenClipart-Vectors-30363; usage according to pixabay license

3/41

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/
https://pixabay.com/users/OpenClipart-Vectors-30363/
https://pixabay.com/service/license/

What is an 'artificial neuron’? (1)

dendrites / “inputs”

axon / “output”

synapse / “weight” soma / “combination”

Brain neuron nerves cell by OpenClipart-Vectors-30363; usage according to pixabay license

3/41

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/
https://pixabay.com/users/OpenClipart-Vectors-30363/
https://pixabay.com/service/license/

What is an 'artificial neuron’? (2)

outputs of other neurons
“axons”

I

Iy

4 /41

What is an 'artificial neuron’? (2)

outputs of other neurons
“axons”
€1

&A
%n@

weight multiplication
“synapses”

Tn

4 /41

What is an 'artificial neuron’? (2)

outputs of other neurons

“axons”
sum & nonlinear activation function

&‘ “SOma”
O—0

/nY

weight multiplication

“synapses”

I

Tn

4/41

What is an 'artificial neuron’? (2)

outputs of other neurons

“axons”
sum & nonlinear activation function
1

output
“axon”

&A “soma’”
%n@ =

weight multiplication
“synapses”

Tn

4/41

What is an 'artificial neuron’? (2)

outputs of other neurons

" 1
axons

sum & nonlinear activation function
output

&A soma “axon”
) @ y
/nY

n y=o(Cjwj- ;) =o(w’ -7

I

weight multiplication
“synapses”

4/41

What is an 'artificial neuron’? (2)

outputs of other neurons

" 1
axons

sum & nonlinear activation function
output

&A soma “aXOI']”
&) @ y
/nv

n y=o(Cjwj- ;) =o(w’ -7

I

weight multiplication
“synapses”

> Very loose relation to biology, if any

4/41

What is an 'artificial neuron’? (2)

outputs of other neurons

" 1
axons

sum & nonlinear activation function
output

&A soma “axon”
) @ y
/nY

n y=o(Cjwj- ;) =o(w’ -7

I

weight multiplication
“synapses”

> Very loose relation to biology, if any

» For (most) MLers, artificial neurons are engineering tools

4/41

What is an 'artificial neuron’? (2)

outputs of other neurons

" 1
axons

sum & nonlinear activation function
output

&A soma “axon”
) @ y
/nY

n y=o(Cjwj- ;) =o(w’ -7

I

weight multiplication
“synapses”

> Very loose relation to biology, if any

» For (most) MLers, artificial neurons are engineering tools, i.e. a set of re-usable
components to build model architectures for ML problem solving

4 /41

A Gallery of Artificial Neural Network Modules

THE UNIVERSITY OF

SYDNEY

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not)

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1

> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

I

Tn

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned
x
1 %A
P
Tn "

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

- hve(s) 1 ifs>40
n VglS) =
b 0 otherwise

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

@*—> y
hvg(s

1 ifs>40
0 otherwise

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

@%—> y
1 ifs>40
hv(s if s
0 otherwise
y = hvy(a” - 7)

6/41

Binary Neurons (McCulloch and Pitts 1943)

> |dea: Spikes are binary (they happen or not) = outputs should be 0 or 1
> Synaptic weights can be only excitatory or inhibitory, i.e. w; € {—1,+1}

» All neurons operate synchronously; weights are fixed, not learned

short notation
X1

w1
@ﬁ%y W)
(s {1 ifs>0 %nv

Tn
0 otherwise

y = hvy(a” - 7)

6/41

Example: XOR-Network

D)
()

7/41

Example: XOR-Network

7/41

Example: XOR-Network

7/41

Example: XOR-Network

7/41

Example: XOR-Network

7/41

Example: XOR-Network

x1 x2 h1 ha ¥y
O 0 0 0 O
1 0 0 0 1
O 1 0 0 1

7/41

Example: XOR-Network

8
I\

>
=

>
)

|

S

/
@o

— -0 O

_ o O O

o O O

O~ = O

7/41

Example: XOR-Network

|
S
/

y

. 0 0 0 0 0

0 1 0 0 1

—1,@ -1 1 1 1 1 0

> |t is easy to show that McCulloch and Pitts (1943) networks can compute every
logical function by decomposing it into elementary blocks (or, and, not)

7/41

Example: XOR-Network

|
S
/

y

. 0 0 0 0 0

- /@ 1 0 0 0 1

0 1 0 0 1

—1,@ -1 1 1 1 1 0

> |t is easy to show that McCulloch and Pitts (1943) networks can compute every
logical function by decomposing it into elementary blocks (or, and, not)

» Highly influential in computer science via Von Neumann (1945) architecture
7/41

Perceptron (Rosenblatt 1958)

> |dea: A learnable classifier with continuous weights and inputs

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}
I

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

T
4@

In

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

T \\EE\‘
(2~
—
Kn' . +1 ifs>0
Tn sign(s) = _
—1 otherwise

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

O

{+1 ifs>0

sign(s
—1 otherwise

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

@—>—> y= sign(a” - 7)

{+1 ifs>0

sign(s
—1 otherwise

> Loss function: lperc(W) = ZZ 1ReLU(T yz)

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

@—>—> y= sign(a” - 7)

{+1 ifs>0

sign(s
—1 otherwise

> Loss function: lperc(W) = ZZ L ReLU(— @” - &; - y;) with ReLU(s) = max{s,0}

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

@—>—> y= sign(a” - 7)

{+1 ifs>0

sign(s
—1 otherwise

> Loss function: lperc(W) = ZZ L ReLU(— @” - &; - y;) with ReLU(s) = max{s,0}

» Learning via stochastic gradient descent from each sample (Z;, y;):

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

@—>—> y= sign(a” - 7)

{+1 ifs>0

sign(s
—1 otherwise

> Loss function: lperc(W) = ZZ L ReLU(— @” - &; - y;) with ReLU(s) = max{s,0}

» Learning via stochastic gradient descent from each sample (Z;, y;):
W W — - VaReLU(— " - 7 - yy)

8/41

Perceptron (Rosenblatt 1958)
> |dea: A learnable classifier with continuous weights and inputs

» Assume only binary class labels y € {—1,+1}

@—>—> y= sign(a” - 7)

{+1 ifs>0

sign(s
8 —1 otherwise

> Loss function: lperc(W) = ZZ L ReLU(— @” - &; - y;) with ReLU(s) = max{s,0}

» Learning via stochastic gradient descent from each sample (Z;, y;):

if wl - T ~y; < 0

W —n - VgReLU(— a7 - & y) =w+n-{ " ¥ :
0 otherwise

8/41

Perceptron Learning Example

Z2
o

..’.. °

9/41

Perceptron Learning Example

9/41

Perceptron Learning Example

1 e ° A
° e o ® o ©
o Fel! _omm
)
&? 0 { ..0
[6) ;u'b = o° 0. ® o
@ ©
-1
-2 -1 0 1 2

9/41

Perceptron Learning Example

9/41

Perceptron Learning Example

9/41

Perceptron Learning Example

T

9/41

Perceptron Learning Example

9/41

Perceptron Learning Example

9/41

Perceptron Learning Example

9/41

Perceptron Learning Example

Z2
o

9/41

Perceptron Learning Example

T2
(s
o
..

9/41

Perceptron Learning Example

T2
(s
o
..

9/41

Perceptron Learning Example

T2
(s
o
..

9/41

Perceptron Learning Example

1 L o o)
(6] *. \\ (o) ©
° o oSO N
g 0 ° ;’i!!!:”o m\',
g™ O
® o
-1
-2 —1 0
)

9/41

Perceptron Learning Example

1 ® o ‘ o)
e 0 ® o ©
A o So® ©
(9 Q
g 0 {p .". .%.
) ;u'b & 0° ® ° 1)
® o
-1
-2 -1 0 1 2

» Provably finds a solution with zero error if one exists!

9/41

Perceptron Learning Example

°
1 ° .: i o
® .51':22' 53 S o
§' 0 f OC%O
(5] .‘ 09 (¢)
° ~‘~. e ® o
—1
—2 —1 0 1 2

» Provably finds a solution with zero error if one exists!

» but even some simple problems, like XOR, remain unsolvable (Minsky and Papert
1969; Olazaran 1996)

9/41

Some historical notes (Olazaran 1996)

» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

10/ 41

Some historical notes (Olazaran 1996)

» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

> Sparked considerable hype

10/41

Some historical notes (Olazaran 1996)

» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

> Sparked considerable hype

> Limitations were known early on but solvable by multiple layers

10/41

Some historical notes (Olazaran 1996)

» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

> Sparked considerable hype

> Limitations were known early on but solvable by multiple layers - just a multi-layer
learning rule was missing

10/41

Some historical notes (Olazaran 1996)

» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

» Sparked considerable hype

> Limitations were known early on but solvable by multiple layers - just a multi-layer
learning rule was missing

» Success of digital computing and symbolic Al almost killed Perceptron research in
the late 60s

10/41

Some historical notes (Olazaran 1996)

» The first perceptron was implemented in hardware, contrasting Von Neumann
(1945) architecture

» Sparked considerable hype

> Limitations were known early on but solvable by multiple layers - just a multi-layer
learning rule was missing

» Success of digital computing and symbolic Al almost killed Perceptron research in
the late 60s, yet some in the field persisted

10/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

11/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,Zy,)

11/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,xy,), where f is some function and
ui, ..., U, are the incoming nodes of v

11/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,xy,), where f is some function and
ui, ..., U, are the incoming nodes of v
> Example:

11/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,xy,), where f is some function and
ui, ..., U, are the incoming nodes of v
> Example:

O,

T, = const.
“input”

11/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,xy,), where f is some function and
ui, ..., U, are the incoming nodes of v

» : _ .2
Example: Ty, = T2

@/@
. \@

“input”

T, =4 -2y
11/41

Backpropagation(Linnainmaa 1970; Werbos 1974; Rumelhart, Hinton, and Williams 1986

> Idea: Consider neural networks as cycle-free computational graphs where each
operation is differentiable

» Each node v has a value z, = f(xy,,...,xy,), where f is some function and
ui, ..., U, are the incoming nodes of v

» : _ .2
Example: Ty, = T2

=
T, = const\;@%;g(xwl) T,

“input’ “output”

LTy = =4z,
11/41

Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

8!137) axw 8xv
D N Tt
wEN(u)

12/41

Backpropagation (contd.)

> For any two nodes u, v, we can re-write:

oz, 0Ly Oxy
ol DI ekt v
weNT(

u)

where Nt (u) are the outgoing nodes of u

12/41

Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

0z, 0Ly Oxy

0xy, 7w %; 0xy, .Bacw
where Nt (u) are the outgoing nodes of u

» Example in our graph above:

0ry Oxy, Oy 0%y, Oxy

Or, Oxy 0%y, ox, ‘awa

12/41

Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

oxy 0Ly Oxy
or, Z (%cu Oy
weNT (u

where Nt (u) are the outgoing nodes of u

» Example in our graph above:

8a:v 8$w1 8xu 81'1112 81’u w2
— . . =2. 4-1
8xu 61-,0 6$w1 8_1'1} 8$w2 Ty T, + Og(l‘un)

12/41

Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

8!131) axw 8561}

or, Z (%cu .Bzcw
weNT

where Nt (u) are the outgoing nodes of u

» Example in our graph above:

0xy 0Ty, Ozy 0%y, Oxy)
— . . =92. 4.1
0z, 0ry Oxy, Oy Oy, Lo Ty +4-log(wu,)

> We can use this formula recursively to compute derivatives from any descendant
nodes

12/41

Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

8!131) 8xw 8:611

or, Z (%cu .&Uw
weNT

where Nt (u) are the outgoing nodes of u

» Example in our graph above:

0xy 0Ty, Ozy 0%y, Oxy)
— . . =92. 4.1
0z, 0ry Oxy, Oy Oy, Lo Ty +4-log(wu,)

> We can use this formula recursively to compute derivatives from any descendant
nodes, e.g. the derivative of the loss w.r.t. weights

12/41

Backpropagation (contd.)

» For any two nodes u, v, we can re-write:

0z, 0Ly Oxy

0xy, 7w %; 0xy, .wa
where Nt (u) are the outgoing nodes of u

» Example in our graph above:

0ry Oxy, Oy 0%y, Oxy

= . =2-z
0%y 0xy Oy, 0xy Oy, v Ty

(Tuwy)

> We can use this formula recursively to compute derivatives from any descendant
nodes, e.g. the derivative of the loss w.r.t. weights

» That is the main utility of frameworks like tensorflow and pytorch!

12/41

Activation functions

» But how to make artificial neurons differentiable?

13/41

Activation functions

» But how to make artificial neurons differentiable? = replace threshold function
with a differentiable surrogate

13/41

Activation functions

» But how to make artificial neurons differentiable? = replace threshold function
with a differentiable surrogate

logistic/sigmoid

1 I I
0.5 -
= 0 :
“—
—0.5| s
-1 | | |
—4-20 2 4
x
1
f) = 1+ exp(—x)
0

13/41

Activation functions

» But how to make artificial neurons differentiable? = replace threshold function

with a differentiable surrogate

logistic/sigmoid

1 I I
0.5 2
0 —
—0.5| :

-1 | | |

—4-20 2 4

x

1

f) = 1+ exp(—x)

tanh

13/41

Activation functions

» But how to make artificial neurons differentiable?
with a differentiable surrogate

logistic/sigmoid

1 I I
0.5 -
= 0 :
“—
—0.5| s
-1 | | |
—4-20 2 4
x
1
f) = 1+ exp(—x)
0

tanh

= replace threshold function

RelLU

—-1-0.50 0.5 1

T

f(z) = max{0,z}

0 1 ifz>0
f(m)_{o if2 <0

13/41

Example: Single-hidden-layer perceptron

O
VK

Un,1

@\K»@

14 /41

Example: Single-hidden-layer perceptron

O
VK

Un,1

@\K»@

1
1+4-exp (—Z;‘zl V) kL —bk)

hy, =

14 /41

Example: Single-hidden-layer perceptron

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

hy, =

14 /41

Example: Single-hidden-layer perceptron

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

= i(yl ?21)2

N
Il
—

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

= i(yl ?21)2

@}’@x@ o¢

oYy

N
Il
—

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

€:i(yl—.@l)2

V1,1
/’@ w1,1 =1
(=) m\@ i

= =2 (yi—)
V1K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

V1,1
/’@ w1,1 =1
@ wl,[\@ o _ .

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

L
o (m) e
i w11 =1
@ wl,L\A 8€ — _ 9. A
o op o
Owgy Owg, O

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

@}’@x@ o¢

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

U1
/” @ w1,1 =1
@) N () o
V1K O
ot o
Owy, oYy

.Uml : : o i
WEK, 1 Ohy
\’@
1
1+4-exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

L
o1t l= Z(yl ?21)2

— w1,1 I=1
@) DN g = >

— = —2-(yi—u

N % ()
at ot
Owy, oYy

Un,1
o¢ 04, ot
WK1 @ ohy, Zale o0,
\’@
1
1+4-exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

V1,1
/’@ w1,1 =1
@ wl,[\@ o _ .

— = —2-(yi—u

V1K 47 ()
at ot
Owy, oYy

Up,
1 . @ o _EL:“’ ot
K Ohy, - — kil oy,
\’@ _
1
1+4-exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

14 /41

Example: Single-hidden-layer perceptron

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

8wk,l

14 /41

Example: Single-hidden-layer perceptron

V1,K

Un,1
1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

L
= Z (yl -
=1
ov
= — 2 . — 4
R (yl yl)
ov _ ov

=hp - ==
Owy, oy

8hk ; kil

oC dh, ot
8Uj7k N 81)]-’;@ 8hk

14 /41

Example: Single-hidden-layer perceptron

V1,K

Un,1

1
1+exp (722;1 vjyk-xjfbk)

=S8 wis b+

hy, =

=1
or
= 2.
e (yl yz)
or b or
Owgy " o
L
or ot
= w . N
Ohy, ; kil 8yl
or . ot

81)3'7]c

14 /41

Example: Single-hidden-layer perceptron

L
() (= =)
wi,1 =1
@ wLL\A o »
V1,K Ui
ol ol

p— h .
Owy " o

o/ 8 Eges
\ Ohy, T oy
@ .
Zk LWk he + ¢ 0vj i k k) Ohy,

» Recall: One hidden layer is enough
for universal approximation!

Un,1

I
M=

N
Il
—

1
1+4-exp (722;1 vjyk-xjfbk)

hy, =

14 /41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

g

15/41

Example: XOR with single-hidden-layer perceptron

15/41

Recurrent Nets (Hopfield 1982)

> |dea: Process dynamic data (i.e. changes over time) via feedback loops

16 /41

Recurrent Nets (Hopfield 1982)

> |dea: Process dynamic data (i.e. changes over time) via feedback loops

()
X

Un, 1

t_ n ot

Recurrent Nets (Hopfield 1982)

> |dea: Process dynamic data (i.e. changes over time) via feedback loops

W
O N0

Un, 1

\’@
Zk 1 Uk By

hiza(ZJ LUk mt)

16 /41

Recurrent Nets (Hopfield 1982)

> |dea: Process dynamic data (i.e. changes over time) via feedback loops

At K t
Uy = D k1 Yk - hy,

. n ot K i1
hk_0-<2j=1uj7k $j+2k/:171)k'7k hy,) 16/41

Recurrent Nets (Hopfield 1982)

> |dea: Process dynamic data (i.e. changes over time) via feedback loops

-

At K t
U = D ey Vky - Dy,

t _ n ot K Cpt—1
hk—0<2j:1%,k $j+zk,/:1“/’k'7k h,) 1o/ a1

Example: Cosine-to-Sine prediction

perceptron (K = 10)

1) | T
— W
0 -
-1
| |
10 20
t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10)

1) | T
— Yt
—
0)
-1
| |
10 20
t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10)

1) | T
— Yt
—
0 N
-1
| |
10 20
t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10)

1) | T
— Yt
—
0)
-1
| |
10 20
t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10)
1 B T T] —mt B T]
— Yt
— Ut
0 B -
—1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10)
1 B T T] —mt B T]
— Yt
— Ut
0 B -
—1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10)
1 B T T] —mt B T]
— Yt
— Ut
0 B
—1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10)
1 B T T] _wt B T]
— Yt
— Ut
0 B
—1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10)

1) | T
— Yt
—
0)
-1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10)

1) | T
— Yt
—
0)
-1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10)
1 B T T] _wt B T]
— Yt
— Ut
0 B ||
—1
| | | |
10 20 10 20
t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] _wt B T] B i
— Yt
— U
0) || -
-1
| | | | | |
10 20 10 20 10 20
t t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] _wt B T] B i
— Yt
— U
0) || -
-1
| | | | | |
10 20 10 20 10 20
t t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] _wt B T] B i
— Yt
— U
0 h ||
-1
| | | | | |
10 20 10 20 10 20
t t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] _wt B T] B i
— Yt
— U
0) || -
-1
| | | | | |
10 20 10 20 10 20
t t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] _wt B T] B i
— Yt
— U
0) || -
-1
| | | | | |
10 20 10 20 10 20
t t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] _wt B T] B i
— Yt
— U
0) || -
-1
| | | | | |
10 20 10 20 10 20
t t t

17 /41

Example: Cosine-to-Sine prediction

perceptron (K = 10) recurrent net (K = 10) GRU (K = 10)
1 | T T] —wt B T]
— Yt
— U
0 h ||
-1
| | | |
10 20 10 20
t t t

17 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

onE @ (o)

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

T

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

®
O-O-@
®-=@-=O

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

onE @ (o)

@_,,... @

ul
O (o)

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

KTZ(?JT—?JT)2
onE @ (o)

@_,,... @

ul
O (o)

18 /41

Backpropagation through time

(Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

)

@_,,...

)

.
/;@7

G

u

()

v

(&)

by = (yr — ?]T)2
Ol

ogr

18 /41

Backpropagation through time

(Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

)

@_,,...

)

.
i/<t1{>7

G

u

()

v

(&)

by = (yr — ?]T)2
Ol

= — 2 . — 4
dir (yT yT)

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node
@ by = (yr — ?]T)Q
@ @ atr i
- _9. _
dir (yT yT)
ul u Al Ol
= =hp —
W 006 "
v —/v/ v

18 /41

Backpropagation through time

(Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

)

@_,,...

)

.
i/<t1{>7

G

u

()

v

(&)

by = (yr — ?]T)2
Ol

agT:_z‘(yT_?)T)
%—h Otr
v T ogr
oty oy
%7%5’.@1

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node
@ by = (yr — ?]T)Q
@ @ oty i
- _9. _
dir (yT yT)
ul u Al Ol
Ly
v oyr
@_,, _,,@_,,@_,@_»@ oty _ ot
i:ii___ﬂ///I////ﬂ ahT‘* o
@ ’ IR X/ TG
() (m)

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time
> Example here: n = K = L = 1, recurrent weight w treated as explicit node
. \2
@ tr = (yr — 9r)
. olrp
@ @ — = —2-(yr —9r
Dir ()

u 8€T h 8€T
= T .

u ul
D)) oo
(i) o+ (i1)= —(or) a2 _, ot
_— .
v v v T
0) @ R
. t=1

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time
> Example here: n = K = L = 1, recurrent weight w treated as explicit node
. \2
@ tr = (yr — 9r)
. olrp
@ @ — = —2-(yr —9r
Dir ()

u 8€T h 8[T
= T .

u ul
()) O o0
(D> —~(D)— olp 8lp
/_V// ohry " o
Y v v My < s
&U:;htl'at'aht
@ @ @ Oly Ohyy Olr

Ohy Ohy Ohim

18 /41

Backpropagation through time

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node

@)

(@)

U
@_> o
v

@)

2
S

Cn)

u

()

v

(o)

(Werbos 1990)

lr = (yr — 2)T)2

Ol
Y
ol
v
Ol
Ohr
ol
w
ol
Ohy

= =2 (yr —9r)

T

Z Ol
= htfl . 0-2 [—

— Ohy

ol
oyr
ol

oy

/

—w'O't

olr
Ohy i1

18 /41

Backpropagation through time (Werbos 1990)

> “Just” backpropagation with a graph 'unrolled’ over time

> Example here: n = K = L = 1, recurrent weight w treated as explicit node
@ by = (yr — ?]T)Q
® - oF s
- _9. _
dir (yT yT)
ul u 8€T aET
Ly
ov oyr
@_,, _,,@_,@_»@_»@ otr _ ot
yd ohr o
() ONL-
T-1
oly N\ Olr
oh;, (Hw "T) Ohr

18 /41

Long Short-Term I\/Iemory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

19/41

Long Short-Term Memory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

19/41

Long Short-Term Memory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

» Here: vector graph for the gated recurrent unit (Cho et al. 2014, GRU) architecture

19/41

Long Short-Term Memory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

» Here: vector graph for the gated recurrent unit (Cho et al. 2014, GRU) architecture

gt:v.ﬁt

19/41

Long Short-Term I\/Iemory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

» Here: vector graph for the gated recurrent unit (Cho et al. 2014, GRU) architecture

7= a<U” T+ W Ry + 17”)

19/41

Long Short-Term Memory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

» Here: vector graph for the gated recurrent unit (Cho et al. 2014, GRU) architecture

I oG
(2 0@

. 0<U1’ F AW B 45y = tanh (U F AW (B) + E)

19/41

Long Short-Term I\/Iemory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

» Here: vector graph for the gated recurrent unit (Cho et al. 2014, GRU) architecture

Z:U<szf+wzﬁf,1+gz)

- e
—_—
z

=g U’ Z AW by 1+b> ht—tanh(U F+ W (ﬁ@EH)H?)

19/41

Long Short-Term I\/Iemory Networks (Hochreiter and Schmidhuber 1997)

> Motivation: The term H _t w - oy in backprop through time can easily vanish (or
explode) = hard to learn for long-term memory effects

> |dea: Let's build an explicit longer-term memory into the model

» Here: vector graph for the gated recurrent unit (Cho et al. 2014, GRU) architecture

ZL:(T(UZI_}—‘—WZ}_]} 1_|_Z_;Z)

@ v @ 1*Zt)®ht1+zt®ht
POric
//////7 B

7= <[]7 '1_7»L+W7"}_7‘171+g7‘> ﬁt:tanh (Uft—i—W(T_‘»t@Etfl)%—g)

19 /41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a
moving window

20/ 41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a @

moving window @

20/ 41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» Idea: Handle variable-sized data via a : %A
w
2

moving window
: /

20/41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a @

moving window @
%A
5 wyv@
/{

20/41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a
moving window

g
DO
oy
@ h; = U(Zszl Wk - xj*’“_l)

20/41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a @

moving window @
\<EE*

> Weights are shared across time steps
Oy
K
DR

20/41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a @

moving window @
\\Egi*

> Weights are shared across time steps

. o L Wi
» Usually multiple convolutions in parallel y
and stacked
_ K

K
@ hj = U(Zk;:l (I ﬂfj+k—1)

20/41

Convolutions (Fukushima, Miyake, and Ito 1983; LeCun and Bengio 1995)

» |dea: Handle variable-sized data via a @

moving window @
\\Egi*

> Weights are shared across time steps

: o L Wi
» Usually multiple convolutions in parallel y@
and stacked
K

» Especially useful for 2D (images) or 3D - X
(video; voxels) data hj = U(Zk:1 Wk - 33j+k—1)

20/41

2D Example

21/41

2D Example

21/41

2D Example

21/41

2D Example

21/41

2D Example

X w Y

N

5 3

21/41

2D Example

21/41

2D Example

X

21/41

2D Example

X 1%% Y
7N
(conv)
4
5 3 5
5 3 5

> Strongly related to image filters (edge detection, sharpen, Gaussian blur, etc.)

21/41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Zy,...,Zn} of auxiliary vectors

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

22/41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

> |dea: Compute affinity a(q, Z;) of gto all Z;

22/41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2
» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;

what is the relevant information for vector g7 (e.g.: machine translation)

» ldea: Compute affinity a(q,%;) (e.g. ¢7 - ;) of ¢ to all &;

22/41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores q;

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores «; and then compute weighted sum ¢ = ZZJL ;- T

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2
» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;

what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores «; and then compute weighted sum ¢ = ZZJL ;- T

-
@

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2
» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;

what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores «; and then compute weighted sum ¢ = ZZJL ;- T

(B)—©

(a)—1)

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores «; and then compute weighted sum ¢ = ZZJL ;- T
_ expa@z))
@ N
E:] 1XP ()

@ e

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores «; and then compute weighted sum ¢ = ZZJL ;- T

22 /41

Softmax / Attention (Bridle 1990; Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2

» Motivation: Assume an unordered database {Z1,...,ZxN} of auxiliary vectors;
what is the relevant information for vector g7 (e.g.: machine translation)

> ldea: Compute affinity a(q,7;) (e.g. ¢° - ;) of ¢ to all Z;, normalize to attention
scores «; and then compute weighted sum ¢ = ZZJL ;- T

o e
=" e

22 /41

Attention illustration

The IK has been great <eos>

23 /41

Attention illustration

The IK has been great <eos>

23 /41

Attention illustration

The IK has

0.6

aq

Das

been

<eos>

23 /41

Attention illustration

The IK

a1 = 0.6

Das IK

has

been

<eos>

23 /41

Attention illustration

The IK has been great <eos>
Z3 Z4 T Zg
©
I
S
Y 3
Das IK ist

23 /41

Attention illustration

The IK has been great <eos>
T Ty T3 Ty T5 Te

a1 = 0.6
Q
°

Qb&

¥

% %2 Y3 Ya
Das IK ist grolartig

23 /41

Attention illustration

The IK

a1 = 0.6

Das IK

has

§1

s

ist

been great <eos>
Ty T T
Ya U5

|

groBartig gewesen

23 /41

Attention illustration

The IK has been great <eos>
X i% iﬂ i% j%
©
I
g
Y Y3 Ya Y5 Yo
Das IK ist grolartig gewesen <eos>

23 /41

Overview

perceptron/feedforward

7 ecR® 7€ RE

24 /41

Overview

perceptron/feedforward

WERLXTL
7ecRY ——— e RE

24 /41

Overview

perceptron/feedforward convolution
W e RExn
FeR" —— e RE ZeR" 7e R K

24 /41

Overview

perceptron/feedforward convolution

wW Lx n K
= n—R>n—' L - nqﬂ,—’ n—K
reR yeR zeR yeR

24 /41

Overview

perceptron/feedforward convolution
W e RLxn W e RE
feR» —— je R FeR? —— e R K

KxK
X e RWTL > Y ¢ Rn—KXn—K

24 /41

Overview

perceptron/feedforward convolution
W e RLxn W e RE
feR» —— je R FeR? —— e R K

KxK
X e RWTL > Y ¢ Rn—KXn—K

24 /41

Overview

perceptron/feedforward convolution
W RLxn € RE
feR» —— je R FeR? —— e R K
KxK

X e RWTL > Y ¢ Rn—KXn—K

recurrent
T o I eR"

1 g‘TeRL

24 /41

Overview

perceptron/feedforward convolution
W € RExn w € RE
feR» —— je R FeR? —— e R K

KxK
X e RWTL > Y ¢ Rn—KXn—K

recurrent
Z oo ZpeR”
El ETERK
171 fleERL

24 /41

Overview

perceptron/feedforward

WERLXTL
7ecRY ——— e RE

recurrent

Bl
8
S
m
=
3

S
S

-~ W W

hy —> -~ > hTERK
v) vl

_'1 yTERL

convolution
= K
w €
FER ——> JeRVK
wW KxK
X c RV > Y ¢ Rn—KXn—K

24 /41

Overview

perceptron/feedforward

WERLXTL
7ecRY ——— e RE

recurrent

Bl
8
S
m
=
3

S
S

-~ W W

hy —> -~ > hTERK
v) vl

_'1 yTERL

convolution
= K
w €
FER ——> JeRVK
wW KxK
X c RV > Y ¢ Rn—KXn—K

attention

q
Z1 o Iy eR”

yeR"

24 /41

Overview

perceptron/feedforward

WERLXTL
7ecRY ——— e RE

recurrent

Bl
8
S
m
=
3

S
S

-~ W W

hy —> -~ > hTERK
v) vl

_'1 yTERL

convolution
= K
w €
FER ——> JeRVK
wW KxK
X c RV > Y ¢ Rn—KXn—K

attention

q
T\ N ER"
NS

softmax

v
yeR"

24 /41

A short note on the history of neural nets

search results on google scholar

108

—
ot
T

—_
T

=
ot
T

—e— artificial intelligence

%Os

60s 70s

|
80s
decade

|
90s

|
00s

|
10s

25 /41

A short note on the history of neural nets

search results on google scholar

108

—
ot
T

—_
T

=
ot
T

—o— artificial intelligence
—o— neural network

%5

60s 70s

|
80s

decade

25 /41

A short note on the history of neural nets

109
T T

= 1 5 - epr . . . —
s & —o— artificial intelligence
S5 —o— neural network
n
<@
g
o L |
[e10]
c
o
(2]
E=
§ 0.5} neural net hypes :
b
-~
O
—
(9]
(]
n

O A | | | |
%Os 60s 70s 80s 90s 00s 10s
decade

25 /41

Recent innovations and tricks

» GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

26 /41

Recent innovations and tricks

» GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

» Max Pooling: Take the maximum value over region after convolution layer for
more shift-invariance and rapid size reduction (Jarrett et al. 2009)

26 /41

Recent innovations and tricks

» GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

» Max Pooling: Take the maximum value over region after convolution layer for
more shift-invariance and rapid size reduction (Jarrett et al. 2009)

» Use really big datasets (Deng et al. 2009; Krizhevsky, Sutskever, and Hinton
2012)

26 /41

Recent innovations and tricks

» GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

» Max Pooling: Take the maximum value over region after convolution layer for
more shift-invariance and rapid size reduction (Jarrett et al. 2009)

» Use really big datasets (Deng et al. 2009; Krizhevsky, Sutskever, and Hinton
2012)

» Dropout: During training, randomly disable neurons to force feature independence
(Srivastava et al. 2014)

26 /41

Recent innovations and tricks

» GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

» Max Pooling: Take the maximum value over region after convolution layer for
more shift-invariance and rapid size reduction (Jarrett et al. 2009)

» Use really big datasets (Deng et al. 2009; Krizhevsky, Sutskever, and Hinton
2012)

» Dropout: During training, randomly disable neurons to force feature independence
(Srivastava et al. 2014)

» Batch normalization: Ensure similar range for features (loffe and Szegedy 2015)

26 /41

Recent innovations and tricks

| 2

| 4

GPUs: Run your neural net on graphics cards (Chellapilla, Puri, and Simard 2006)

Max Pooling: Take the maximum value over region after convolution layer for
more shift-invariance and rapid size reduction (Jarrett et al. 2009)

Use really big datasets (Deng et al. 2009; Krizhevsky, Sutskever, and Hinton
2012)

Dropout: During training, randomly disable neurons to force feature independence
(Srivastava et al. 2014)

Batch normalization: Ensure similar range for features (loffe and Szegedy 2015)
Residual Nets: Add layer input to layer output for 'shortcuts’ in the gradient and

separation of concerns (He et al. 2016)

26 /41

Recipes for neural network construction

THE UNIVERSITY OF

SYDNEY

Regressor
_ _ input
1. Transform input data into vector form '

input-to-vector layers

28 /41

Regressor

input
1. Transform input data into vector form '
2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v

perceptron layer

perceptron layer

28 /41

Regressor

_ _ input

1. Transform input data into vector form '

2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v

perceptron layer
3. use residual connections and dropout or batch

normalization if needed

perceptron layer

28 /41

Regressor

_ _ input
1. Transform input data into vector form '
2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v
perceptron layer
3. use residual connections and dropout or batch v
normalization if needed ReLU
4. Between each layer, apply nonlinearity, e.g. ReLU Y
v

perceptron layer

28 /41

Regressor

_ _ input
1. Transform input data into vector form '
2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v
perceptron layer
3. use residual connections and dropout or batch v
normalization if needed ReLU
4. Between each layer, apply nonlinearity, e.g. ReLU Y
5. Apply regression loss, e.g. RMSE v
perceptron layer
v
RMSE

28 /41

Regressor

input
1. Transform input data into vector form '
2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v
perceptron layer
3. use residual connections and dropout or batch v
normalization if needed ReLU
4. Between each layer, apply nonlinearity, e.g. ReLU Y
5. Apply regression loss, e.g. RMSE v
6. Apply an optimizer, e.g. ADAM, until loss is very low perceptron layer
v
RMSE

28 /41

Regressor

input
1. Transform input data into vector form '
2. Push vectors through several perceptron layers, where input-to-vector layers
last layer has L outputs v
perceptron layer
3. use residual connections and dropout or batch v
normalization if needed ReLU
4. Between each layer, apply nonlinearity, e.g. ReLU Y
5. Apply regression loss, e.g. RMSE v
6. Apply an optimizer, e.g. ADAM, until loss is very low perceptron layer
v
7. Use weight decay if needed RMSE

28 /41

Classifier
input
v
input-to-vector layers
v
perceptron layer
v

RelLU
v

» Same recipe as before, but:

Y
perceptron layer

29/41

Classifier

» Same recipe as before, but:

5.1. Apply softmax layer

. exp(z;)

Y=

L
> oy—q exp(xy)

input
v
input-to-vector layers
v
perceptron layer
v

RelLU
v

Y
perceptron layer
v

softmax

29/41

Classifier

» Same recipe as before, but:

5.1. Apply softmax layer

o1 = exp(;)
=y
>y exp(ay)

5.2. Apply classification loss, e.g. crossentropy

L
C==> yrlog 4]
=1

input
v

input-to-vector layers

v
perceptron layer
v

RelLU
v

Y
perceptron layer
v

softmax

v

crossentropy

29/41

Classifier

» Same recipe as before,

5.1. Apply softmax layer

~

Y=

but:

exp(z;)

L
>y exp(ay)

5.2. Apply classification loss, e.g. crossentropy

Z yi-log [i1]

Zyl r;—log Zexp xy))

'=1

input
v
input-to-vector layers
v
perceptron layer
v

RelLU
v

Y
perceptron layer
v

softmax

v

crossentropy

29/41

Variational Auto-Encoder (Kingma and Welling 2013)

» Method for dimensionality reduction

30/41

Variational Auto-Encoder (Kingma and Welling 2013)

input
» Method for dimensionality reduction v
. : , o regressor
» Same recipe as regression for first half, resulting in mean & “
vector ji and standard deviation vector & . e
Iz & €RE

30/41

Variational Auto-Encoder (Kingma and Welling 2013)

input
» Method for dimensionality reduction v
. _ _ . regressor

» Same recipe as regression for first half, resulting in mean & “

vector ji and standard deviation vector & . e .
i € GeRF

» Generate low-dimensional representation as vV
= i +€® & for random normal noise € ®
v
y

30/41

Variational Auto-Encoder (Kingma and Welling 2013)

» Method for dimensionality reduction

> Same recipe as regression for first half, resulting in mean
vector i and standard deviation vector &

» Generate low-dimensional representation as
= i +€® & for random normal noise €

» Use an inverse regressor to decode back to input

input
v

regressor

PN
A & e RL
p

¢
v
®
v
y

v
inverse regressor
v
input’

30/41

Variational Auto-Encoder (Kingma and Welling 2013)

» Method for dimensionality reduction

> Same recipe as regression for first half, resulting in mean
vector i and standard deviation vector &

» Generate low-dimensional representation as
= i +€® & for random normal noise €

» Use an inverse regressor to decode back to input

» Loss:
tuse(input, input') + 3 (" - ji + S, 0f — log[o7))

input
v

regressor

PN
A & e RL
p

¢
v
®
v
y

v
inverse regressor
v
input’

30/41

Variational Auto-Encoder (Kingma and Welling 2013)

» Method for dimensionality reduction

> Same recipe as regression for first half, resulting in mean
vector i and standard deviation vector &

» Generate low-dimensional representation as
= i +€® & for random normal noise €

» Use an inverse regressor to decode back to input

» Loss:
tuse(input, input') + 3 (" - ji + S, 0f — log[o7))

> Note: Loss is very likely to fluctuate due to randomness

input
v

regressor
PN
g & GeRL
v
©
¥
v

v
inverse regressor
v
input’

30/41

Variational Auto-Encoder example

31/41

Variational Auto-Encoder example

encoder @

S
T, %

™~

b
S

6/
O

Variational Auto-Encoder example

encoder :

_ \@%
XK

8
~

(=)
©

®/
()

€1 €2

Gaussian noise
31/41

Variational Auto-Encoder example

encoder

€1 €2

Gaussian noise

Variational Auto-Encoder example

encoder decoder

q/\m/;@ @_’@/’

ARRRIN .
gl @

Gauss ian noise

Variational Auto-Encoder example

encoder

8

P

~

S SO
IR

decoder

@ﬁ@”’
@*@

Gaussa noise

T

Variational Auto-Encoder example

encoder -2+ 6553@ -| decoder

TR
S L | =) 30
=B €

€2

Gaussian noise

aecoded random noise

Variational Auto-Encoder example N N
2

fo ;

encoder -

/ ;@% oL
X »@\ @*@\.

61

decoder

5

Gaussian nose
31/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)

32/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)
> |dea: RNN for encoding, auto-regressive RNN for decoding

32/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)
> |dea: RNN for encoding, auto-regressive RNN for decoding

32/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different

length and order? (e.g. machine translation)
> |dea: RNN for encoding, auto-regressive RNN for decoding

Sl(—fjl
-—

encoder RNN

32/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)
> |dea: RNN for encoding, auto-regressive RNN for decoding

decoder RNN

T Tm i <sos>
gb g& g%l E ﬁl En
eg. 0 E l l
encoder RNN i
i :’jl Zjn

32/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)
> |dea: RNN for encoding, auto-regressive RNN for decoding

decoder RNN

T Tm i <sos>
gb g& g@n E ﬁl ///i¥' ///;§n
eg 0 : l l
encoder RNN i
Cn

32/41

Sequence-to-Sequence Learning (Sutskever, Vinyals, and Le 2014)

» Motivation: How to map from a sequence to another sequence of different
length and order? (e.g. machine translation)
> |dea: RNN for encoding, auto-regressive RNN for decoding

decoder RNN

T Tm i <sos>
gb g& g%z E ﬁl //i¥' ///;; ﬁn+1
eg. 0 E l l l
encoder RNN i
i i e Un <eos>

32/41

Seq2Seq example

33/41

Seq2Seq example

A B
dictionary ¥ ¥
(1,0,0) (0,1,0)

v v v v dictionary

33/41

Seq2Seq example

A B

dictionary ¥ ¥
(1,0,0) (0,1,0)

v ¥

00— G —> Go

encoder RNN

(0,1,0)

dictionary

33/41

Seq2Seq example

A B decoder RNN
dictionary ¥ ¥
(1,0,0) (0,1,0) (0,0,0)
v 7 \J
6 gl §2 El f_ig 53 H4

encoder RNN

v v v v dictionary

33/41

Seq2Seq example

A B i decoder RNN
dictionary ¥ ¥ i
(1,0,0) (0,1,0) ' (0,0,0)
v v i v
6 gl §2 : El f_ig 53 H4
i v v v v
encoder RNN i C1 Co C3 Ca
| \ ¥ v v argmax
' (1,0,0) (0,1,0) (1,0,0) (0,1,0)
! v ¥ ¥ dictionary
A B A B

33/41

Seq2Seq example

A B i decoder RNN
dictionary ¥ ¥ i
(1,0,0) (0,1,0) ' (0,0,0)
v v i v
6 51 §2 : f_il EQ 53 H4
i v v v
encoder RNN i C1 Co C3 Cy
| \ ¥ v v argmax
' (1,0,0) (0,1,0) (1,0,0) (0,1,0)
! v ¥ ¥ dictionary
A B A B

33/41

Seq2Seq example

A B i decoder RNN
dictionary ¥ ¥ i
(1,0,0) (0,1,0) ' (0,0,0)
v v i v
6 51 §2 : f_il EQ 53 H4 ﬁ5
i v v v v v
encoder RNN i 1 Ca C3 Ca Cs
' v v v v yargmax
i (1,0,0) (0,1,0) (1,0,0) (0,1,0) (0,0,1)
! v v v ydictionary
A B A B <eos>

33/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data

Gaussian noise z7 —> —> I

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data
Gaussian noise 7 —> —> L
\ discriminator

@—> y € [0,1]
a:/

real data

34 /41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data

Gaussian noise zZ —> —> I L
\ discriminator

@—> y €10,1]

discriminator loss

4
F = log [9(a)] = Yozlog [1 - g(f(2))]

real data

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data

Gaussian noise 7 —> —> L
\ discriminator

generator loss
S log [1 - g(f(2)] (9)—yelo]
discriminator loss

F = log [9(a)] = Yozlog [1 - g(f(2))]

real data

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data

Gaussian noise 7 —> —> L
\ discriminator

generator loss
> zlog [1 — g(f(Z))] @_> yelo
discriminator loss

F = log [9(a)] = Yozlog [1 - g(f(2))]

real data
» Very versatile architecture (not limited to data types or neural nets)

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data

Gaussian noise 7 —> —> L
\ discriminator

generator loss
> zlog [1 — g(f(Z))] @_> yelo
discriminator loss

F = log [9(a)] = Yozlog [1 - g(f(2))]

real data
» Very versatile architecture (not limited to data types or neural nets)

» But: Notoriously hard to train!

34/41

Generative Adversarial Networks (Goodfellow, Pouget-Abadie, et al. 2014)

> Motivation: Generate realistic-looking 'fake’ data, e.g. for data augmentation

> Idea: Let a generator and a discriminator network compete

generator fake data

Gaussian noise 7 —> —> L
\ discriminator

generator loss
> zlog [1 — g(f(Z))] @_> yelo
discriminator loss

F = log [9(a)] = Yozlog [1 - g(f(2))]

real data
» Very versatile architecture (not limited to data types or neural nets)
> But: Notoriously hard to train! E.g.: Imbalanced learning speed of generator and
discriminator, generator only does exact copies, generator looses variance

34/41

GAN Example

real data x

35/41

GAN Example

Gaussian noise 2’

real data x

35/41

GAN Example

Gaussian noise 2’

generator

@

fake data #

real data x

35/41

GAN Example

Gaussian noise 2’

generator

@

fake data #

real data x

\discriminato

35/41

GAN Example

Gaussian noise 2’

generator

@

fake data #

real data x

\discriminato

35/41

GAN Example

Gaussian noise 2’ fake data #
generator

T T T ks

L i \discriminato

real data x

(9)——
S

35/41

Adversarial Attacks

THE UNIVERSITY OF

SYDNEY

Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes

37/41

https://arxiv.org/pdf/1707.08945.pdf
https://nicholas.carlini.com/code/audio_adversarial_examples/

Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes

> “Robust Physical-World Attacks on Deep Learning Visual Classification” (Eykholt
et al. 2018): Link

37/41

https://arxiv.org/pdf/1707.08945.pdf
https://nicholas.carlini.com/code/audio_adversarial_examples/

Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes

» “Robust Physical-World Attacks on Deep Learning Visual Classification” (Eykholt
et al. 2018): Link

» “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text” (Carlini and
Wagner 2018): Link

37/41

https://arxiv.org/pdf/1707.08945.pdf
https://nicholas.carlini.com/code/audio_adversarial_examples/

Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes

» “Robust Physical-World Attacks on Deep Learning Visual Classification” (Eykholt
et al. 2018): Link

» “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text” (Carlini and
Wagner 2018): Link

> “Adversarial Edit Attacks for Tree Data” (PaaRen 2019)

37/41

https://arxiv.org/pdf/1707.08945.pdf
https://nicholas.carlini.com/code/audio_adversarial_examples/

Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes

» “Robust Physical-World Attacks on Deep Learning Visual Classification” (Eykholt
et al. 2018): Link

» “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text” (Carlini and
Wagner 2018): Link

> “Adversarial Edit Attacks for Tree Data” (PaaRen 2019)

AA_
|

GleNAc_1b

/\) -
G b e = classified as leukemic

Man_1b4

Man 1a3 Man_la6

GleNA_1b2 GleNAc_1b2
| |
Gal_1b4 Gal_1b4
| |

NeuAc_2a6 NeuAc_2a6 37/41

https://arxiv.org/pdf/1707.08945.pdf
https://nicholas.carlini.com/code/audio_adversarial_examples/

Examples of Adversarial Attacks

» An adversarial attack is an imperceptible change to a data point, such that the
predicted label changes

» “Robust Physical-World Attacks on Deep Learning Visual Classification” (Eykholt
et al. 2018): Link

» “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text” (Carlini and
Wagner 2018): Link

> “Adversarial Edit Attacks for Tree Data” (PaaRen 2019)

AA_
|

GleNAc_

/\ .- .
G s = classified as benign

Man_1b4

Man 1a3 Man_la6

GleNA_1b2 GleNAc_1b2
| |
Gal_1b4 Gal_1b4
| |

NeuAc_2a6 NeuAc_2a6 37/41

https://arxiv.org/pdf/1707.08945.pdf
https://nicholas.carlini.com/code/audio_adversarial_examples/

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019).

38/41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f and point x as

min d(z, z)

st. f(z) # f(z)

38 /41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f, loss /¢, threshold ¢, and point x as

mzin d(zx, z) or max Uy, f(2))
st. f(2) # f(x) st. d(x,z) <e

38 /41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f, loss /¢, threshold ¢, and point x as

mzin d(zx, z) or max Uy, f(2))
st. f(2) # f(x) st. d(x,z) <e

> fast gradient sign method: sign gradient ascent on ¢ and clipping:
z < x + sign [fo(y, f(x))] (Goodfellow, Shlens, and Szegedy 2015)

38 /41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f, loss /¢, threshold ¢, and point x as

mzin d(zx, z) or max Uy, f(2))
st. f(2) # f(x) st. d(x,z) <e

> fast gradient sign method: sign gradient ascent on ¢ and clipping:
z < x + sign [fo(y, f(x))] (Goodfellow, Shlens, and Szegedy 2015)

(&) ° (%]
- |
15, .
(¢]
° (%]
1|) |
@ (%]
(¢]
| - 07
0.5 ..
(¢]
O\ | |

38 /41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f, loss /¢, threshold ¢, and point x as

mzin d(zx, z) or max Uy, f(2))
st. f(2) # f(x) st. d(x,z) <e

> fast gradient sign method: sign gradient ascent on ¢ and clipping:
z < x + sign [fo(y, f(x))] (Goodfellow, Shlens, and Szegedy 2015)

1.5

38/41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f, loss /¢, threshold ¢, and point x as

mzin d(zx, z) or max Uy, f(2))
st. f(2) # f(x) st. d(x,z) <e

> fast gradient sign method: sign gradient ascent on ¢ and clipping:
z < x + sign [fo(y, f(x))] (Goodfellow, Shlens, and Szegedy 2015)

1.5

38/41

Formalization (Goodfellow, Shlens, and Szegedy 2015)

> Assume some perception distance d (Gopfert et al. 2019). We define an
adversarial example z w.r.t. model f, loss /¢, threshold ¢, and point x as

mzin d(zx, z) or max Uy, f(2))
st. f(2) # f(x) st. d(x,z) <e

> fast gradient sign method: sign gradient ascent on ¢ and clipping:
z < x + sign [fo(y, f(x))] (Goodfellow, Shlens, and Szegedy 2015)

1.5

38/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

1.5

0.5

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

1.5

0.5

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

1.5

0.5

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

1.5

0.5

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

1.5

0.5

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold ¢

1.5

0.5

Rules of Thumb:

39 /41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold e

T . T ° T o
1oy © ° h Rules of Thumb:
(0
PO » Large-Margin methods are harder to
L . ‘ | attack (e.g. SVM)
o
0.5 N °
o
e | | |

39 /41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold e

1.5 | Rules of Thumb:

» Large-Margin methods are harder to
attack (e.g. SVM)

i » High-dimensional inputs are easier to
attack (e.g. images)

39 /41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold e

1.5 | Rules of Thumb:

» Large-Margin methods are harder to
attack (e.g. SVM)

i » High-dimensional inputs are easier to
attack (e.g. images)

0.5

0 0.5 1 1.5 2
» many (intuitive) defenses don't work (Athalye, Carlini, and Wagner 2018)

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold e

1.5 | Rules of Thumb:

» Large-Margin methods are harder to
attack (e.g. SVM)

i » High-dimensional inputs are easier to
attack (e.g. images)

0.5

0 0.5 1 1.5 2

» many (intuitive) defenses don't work (Athalye, Carlini, and Wagner 2018)
» most promising to date: robust optimization (i.e. train with adversarials; Madry
et al. 2018)

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold e

1.5 | Rules of Thumb:

» Large-Margin methods are harder to
attack (e.g. SVM)

i » High-dimensional inputs are easier to
attack (e.g. images)

0.5

0 0.5 1 1.5 2

» many (intuitive) defenses don't work (Athalye, Carlini, and Wagner 2018)
» most promising to date: robust optimization (i.e. train with adversarials; Madry
et al. 2018)

N
mfinz (yi, f (1))
=1

39/41

Defenses against adversarial attacks

> Existence and quantity of adv. examples depends e.g. on choice of model f,
distance d, and threshold e

1.5 | Rules of Thumb:

» Large-Margin methods are harder to
attack (e.g. SVM)

i » High-dimensional inputs are easier to
attack (e.g. images)

0.5

0 0.5 1 1.5 2

» many (intuitive) defenses don't work (Athalye, Carlini, and Wagner 2018)
» most promising to date: robust optimization (i.e. train with adversarials; Madry
et al. 2018)

=1 39 /41

Summary

THE UNIVERSITY OF

SYDNEY

How to design & train a neural net

» Use only if 'classic’ ML methods don't suffice

41 /41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice

> Best use a pre-defined architecture with pre-defined loss as template

41 /41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

——train loss

¥ ,

model complexity

loss
|

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

——train loss
—— test loss

loss
T
|

model complexity

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

——train loss
—— test loss

“classic ML"

loss

model complexity

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

——train loss

“modern ML" || test loss

“classic ML"

loss

model complexity

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice

> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,

“double descent” idea)

\
d»ﬁ—'ré’?wrain loss

—— test loss

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

v
‘;»ﬁ—'ré’?mrain loss

—— test loss

model complexity
» Train in batches, not with single points

41/41

How to design & train a neural net

> Use only if 'classic’ ML methods don't suffice
> Best use a pre-defined architecture with pre-defined loss as template

» Overparametrize; design a network that can definitely bring the training error to
zero; then use regularization to prevent too bad overfitting (Belkin et al. 2019,
“double descent” idea)

v
d d»ﬁ—'ré’?mrain loss

—— test loss

model complexity
» Train in batches, not with single points

» Perform lots of soundness check early on; monitor your progress well

41/41

Literature

THE UNIVERSITY OF

SYDNEY

Literature |

Athalye, Anish, Nicholas Carlini, and David Wagner (2018). “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial Examples”. |n:
Proceedings of the 35th International Conference on Machine Learning
(ICML 2018). Ed. by Jennifer Dy and Andreas Krause. PMLR, pp. 274-283. URL:
http://proceedings.mlr.press/v80/athalyel8a.html.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine
translation by jointly learning to align and translate”. In: Proceedings of the 2nd
International Conference on Learning Representations (ICLR 2014). URL:
https://arxiv.org/abs/1409.0473.

Belkin, Mikhail et al. (2019). “Reconciling modern machine-learning practice and the
classical bias—variance trade-off’. In: Proceedings of the National Academy of
Sciences 116.32, pp. 15849-15854. DOI: 10.1073/pnas.1903070116. URL:
https://arxiv.org/abs/1812.11118.

43 /41

http://proceedings.mlr.press/v80/athalye18a.html
https://arxiv.org/abs/1409.0473
https://doi.org/10.1073/pnas.1903070116
https://arxiv.org/abs/1812.11118

Literature Il

Bridle, John S. (1990). “Probabilistic Interpretation of Feedforward Classification
Network Outputs, with Relationships to Statistical Pattern Recognition”. In:
Neurocomputing. Ed. by Francoise Fogelman Soulié and Jeanny Hérault.
Berlin/Heidelberg, Germany: Springer, pp. 227-236. DOI:
10.1007/978-3-642-76153-9_28.

Carlini, Nicholas and David Wagner (2018). “Audio Adversarial Examples: Targeted
Attacks on Speech-to-Text". |n: Proceedings of the 2018 IEEE Security and
Privacy Workshops (SPW 2018), pp. 1-7. DOI: 10.1109/SPW.2018.00009.
URL: https://arxiv.org/abs/1801.01944.

Chellapilla, Kumar, Sidd Puri, and Patrice Simard (2006). “High Performance
Convolutional Neural Networks for Document Processing”. |n: Proceedings of the
10th International Workshop on Frontiers in Handwriting Recognition. Ed. by
Guy Lorette. URL: https://hal.inria.fr/inria-00112631/.

44 /41

https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.1109/SPW.2018.00009
https://arxiv.org/abs/1801.01944
https://hal.inria.fr/inria-00112631/

Literature Il

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation”. |n: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP
2014). Ed. by Alessandro Moschitti, Bo Pang, and Walter Daelemans,
pp. 1724-1734. URL: https://www.aclweb.org/anthology/D14-1179.

Deng, J. et al. (2009). “ImageNet: A large-scale hierarchical image database”. In:
Proceedings of the 22nd IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2009), pp. 248-255. DOI: 10.1109/CVPR.2009.5206848.

Eykholt, Kevin et al. (2018). “Robust Physical-World Attacks on Deep Learning Visual
Classification”. In: Proceedings of the 31st IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2018). Ed. by Michael Brown et al.,
pp. 1625-1634. URL: https://arxiv.org/abs/1707.08945.

45 /41

https://www.aclweb.org/anthology/D14-1179
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1707.08945

Literature IV

Fukushima, Kunihiko, Sei Miyake, and Takayuki Ito (1983). “Neocognitron: A neural
network model for a mechanism of visual pattern recognition”. n: IEEE

Transactions on Systems, Man, and Cybernetics SMC-13.5, pp. 826-834. DOI:

10.1109/TSMC. 1983.6313076.

Goodfellow, lan, Jean Pouget-Abadie, et al. (2014). “Generative Adversarial Nets". |n:
Proceedings of the 27th International Conference on Advances in Neural
Information Processing Systems (NIPS 2014). Ed. by Z. Ghahramani et al.,
pp. 2672-2680. URL:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.

Goodfellow, lan, Jonathon Shlens, and Christian Szegedy (2015). “Explaining and
Harnessing Adversarial Examples”’. In: Proceedings of the 3rd International
Conference on Learning Representations (ICLR 2015). Ed. by Yoshua Bengio
and Yann LeCunn. URL: http://arxiv.org/abs/1412.6572.

Gopfert, Jan Philip et al. (2019). Adversarial attacks hidden in plain sight. arXiv:
1902.09286 [stat.ML].

46 /41

https://doi.org/10.1109/TSMC.1983.6313076
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1902.09286

Literature V

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In:
Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), pp. 770-778. URL:
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_
Residual_Learning_ CVPR_2016_paper.html.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long Short-Term Memory”. |n:
Neural Computation 9.8, pp. 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.

Hopfield, John (1982). “Neural networks and physical systems with emergent collective
computational abilities”. In: Proceedings of the National Academy of Sciences
79.8, pp. 2554-2558. DOI: 10.1073/pnas.79.8.2554.

loffe, Sergey and Christian Szegedy (2015). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv:
1502.03167 [cs.LG].

47 /41

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://arxiv.org/abs/1502.03167

Literature VI

Jarrett, K. et al. (2009). "What is the best multi-stage architecture for object
recognition?” In: Proceedings of the 12th IEEE International Conference on
Computer Vision (ICCV 2009), pp. 2146-2153. DOI:
10.1109/ICCV.2009.5459469.

Kingma, Diederik and Max Welling (2013). Auto-Encoding Variational Bayes. arXiv:
1312.6114 [stat.ML].

Krizhevsky, Alex, llya Sutskever, and Geoffrey Hinton (2012). “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Proceedings of the 25th
International Conference on Advances in Neural Information Processing
Systems (NIPS 2012). Ed. by F. Pereira et al., pp. 1097-1105. URL:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.

LeCun, Yann and Yoshua Bengio (1995). “Convolutional networks for images, speech,
and time series”. In: The handbook of brain theory and neural networks.
Cambridge, MA, USA: MIT Press, pp. 276-278.

48 /41

https://doi.org/10.1109/ICCV.2009.5459469
https://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Literature VII

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Nature
521, pp. 436-444. DOI: 10.1038/nature14539.

Linnainmaa, Seppo (1970). “The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors’. MA thesis. University of
Helsinki.

Madry, Aleksander et al. (2018). “Towards Deep Learning Models Resistant to
Adversarial Attacks”. In: Proceedings of the 6th International Conference on
Learning Representations (ICLR 2018). Ed. by Yoshua Bengio and Yann LeCun.
URL: https://openreview.net/forum?id=rJzIBfZAb.

McCulloch, Warren and Walter Pitts (1943). “A logical calculus of the ideas immanent
in nervous activity”. In: The Bulletin of Mathematical Ciophysics 5.4,
pp. 115-133. DOI: 10.1007/BF02478259.

Minsky, Marvin and Seymour Papert (1969). Perceptrons: An introduction to
computational geometry. Cambridge, MA, USA: MIT Press.

49 /41

https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1007/BF02478259

Literature VIII

Olazaran, Mikel (1996). “A Sociological Study of the Official History of the Perceptrons
Controversy”. In: Social Studies of Science 26.3, pp. 611-659. DOI:
10.1177/030631296026003005.

Paalen, Benjamin (2019). “Adversarial Edit Attacks for Tree Data". In: Proceedings
of the 20th International Conference on Intelligent Data Engineering and
Automated Learning (IDEAL 2019). Ed. by Hujun Yin et al., pp. 359-366. DOI:
10.1007/978-3-030-33607-3_39. URL: https://arxiv.org/abs/1908.09364.

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information
storage and organization in the brain”. In: Psychological Review 65.6, pp. 386-408.
DOI: 10.1037/h0042519

Rumelhart, David, Geoffrey Hinton, and Ronald Williams (1986). “Learning
representations by back-propagating errors”. |n: nature 323.6088, pp. 533-536. DOI:
10.1038/323533a0.

50 /41

https://doi.org/10.1177/030631296026003005
https://doi.org/10.1007/978-3-030-33607-3_39
https://arxiv.org/abs/1908.09364
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0

Literature IX

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15, pp. 1929-1958.
URL: http://jmlr.org/papers/vi5/srivastavalda.html.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to Sequence Learning
with Neural Networks". In: Proceedings of the 27th International Conference on
Advances in Neural Information Processing Systems (NIPS 2014). Ed. by
Z. Ghahramani et al., pp. 3104-3112. URL: http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-neural.

Vaswani, Ashish et al. (2017). “Attention is All you Need". In: Proceedings of the
30th International Conference on Advances in Neural Information Processing
Systems (NIPS 2017). Ed. by |. Guyon et al., pp. 5998-6008. URL:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.

Von Neumann, John (1945). First Draft of a Reporton the EDVAC. Tech. rep.
University of Pennsylvania. URL: https:
//nsu.ru/xmlui/bitstream/handle/nsu/9018/2003-08-TheFirstDraft.pdf.

51 /41

http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://nsu.ru/xmlui/bitstream/handle/nsu/9018/2003-08-TheFirstDraft.pdf
https://nsu.ru/xmlui/bitstream/handle/nsu/9018/2003-08-TheFirstDraft.pdf

Literature X

Werbos, Paul (1974). “Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences”.

— (1990). “Backpropagation through time: what it does and how to do it".
Proceedings of the IEEE

52 /41

https://doi.org/10.1109/5.58337

	A Gallery of Artificial Neural Network Modules
	Recipes for neural network construction
	Adversarial Attacks
	Summary
	Literature
	References

