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Reinforcement Learning Basics



Motivation: Playing games

I How do I model an agent who should play a game?

I Very sparse supervision: Game score or winning/losing

I Future depends on agents’ actions ⇒ data are not i.i.d.

I General idea: Reinforce moves that end up in winning games, punish moves that
end up in losing games

⇒ reinforcement learning

Important note: These slides are inspired by Emma Brunskill’s brilliant course on
reinforcement learning (→ Link)
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Timeline: Successes in Reinforcement Learning for Games

Backgammon (Tesauro 1995)

Atari games (Mnih et al. 2015)

Atari cartridges by the Digital Games Museum; usage according to CC-BY-2.0

Go (Silver et al. 2016)

DotA 2 (Pachocki et al. 2019)

The International 2019 Logo by Dota 2; usage according to CC-BY-SA-4.0

Starcraft 2 (Vinyals et al. 2019)

Starcraft 2 logo PNG by Blizzard; usage according to CC-BY-NC-4.0
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https://commons.wikimedia.org/wiki/File:The_International_2019.jpg
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Definition: Reinforcement Learning

I Let S be the set of possible world states

I Let A be the set of possible actions of our agent

I Let r : S ×A → R be a reward or punishment signal

I Let f : S ×A → S be the world’s state transition function

I Then, the corresponding (deterministic) reinforcement learning problem is

max
π:X→A

∑
t

r
(
st, at

)

where at = π(st) and st+1 = f
(
st, at

)
; i.e. find the policy π of our agent that

maximizes the overall reward
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Reinforcement Learning Illustration

world state st ∈ S

agent with policy π

action at = π(xt) ∈ A

state transition function f

reward function r reward rt
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Gridworld Example

states: S = { , , , , , ,
, , , , , , , , }

actions: A = {↑,	,�}

transition: see left; reward: +1 at goal

policy? st at = π(st)

↑
	
↑
↑
�
↑

7 / 40
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Markov Decision Processes (MDPs)

I Idea: Consider an indeterministic world, i.e. state transition distribution
p(st+1|st, at) (policy and reward as before)

I implies notion of expected reward of a policy π starting from state s, i.e. state
value V π(s):

V π(s) = r
(
s, π(s)

)
+ γ ·

∑
s′∈S

p(s′|s, π(s)) · V π(s′)

where γ ∈ [0, 1] is a discount factor for future rewards

I Maximization problem becomes:

max
π:S→A

V π(s0)

8 / 40
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Policy Iteration Algorithm

1: function policy_iter(State set S, action set A, transition distribution p, discount
factor γ, initial policy π : S → A)

2: while π changes do

3: while V π changes do
4: for s ∈ S do
5: V π(s)← r

(
s, π(s)

)
+ γ ·

∑
s′∈S p(s

′|s, π(s)) · V π(s′).
6: end for
7: end while
8: for s ∈ S do
9: π(s)← argmaxa∈A r(s, a) + γ ·

∑
s′∈S p(s

′|s, a) · V π(s′).
10: end for

11: end while

12: return π.

13: end function
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Gridworld Example
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Monte Carlo Algorithm
1: function mc(State set S, action set A, simulator Sim, number of simulations N)
2: while π changes do
3: N(s, a)← 0, Q(s, a)← 0 for all s ∈ S, a ∈ A.

4: for i ∈ {1, . . . , N} do
5: Simulate trajectory (s0, a0, r0), . . . , (sT , aT , rT ) with current policy π.

6: for t ∈ {T, . . . , 1} do
7: Gt ← rt + γ ·Gt+1 =

∑T−t
τ=0 γ

τ · rt+τ .

8: N(st, at)← N(st, at) + 1.
9: Q(st, at)← Q(st, at) +Gt.

10: end for

11: end for
12: for s ∈ S do
13: π(s)← argmaxa∈AQ(s, a)/N(s, a).
14: end for

15: end while

16: return π.

17: end function
11 / 40
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Gridworld Example

I ε-greedy policy: Do ’true’ action 1− ε
of the time and random action otherwise
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Deep Q-Learning

I Motivation: What to do if |S| is very large? (million or higher)

I Idea: Don’t tabulate Q(s, a) but learn a regressor with parameters ~θ (e.g. a deep
neural net)

I Algorithm: For every simulation time step (st, at, rt) with next step st+1 do a
gradient step

~θt+1 = ~θt − η · ∇~θ‖Q̂(st, at)−Q(st, at|~θ)‖2

= ~θt + 2η ·
(
Q̂(st, at)−Q(st, at|~θ)

)
· ∇~θQ(st, at|~θ)

where Q̂(st, at) = rt + γ ·maxa∈AQ(st+1, a|~θ)
I Tricks: ’replay’ a buffer of the past multiple times; keep parameters for estimation

of Q̂(st, at) fixed for a number of time steps
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Atari Video Games

14 / 40

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Imitation Learning

I Motivation: What if state space is large and simulations are expensive?

I Idea: Let an expert demonstrate a ’good enough’ policy via a few sample
trajectories and imitate it

I Reduces policy learning to supervised regression

I Note: Multiple subtleties involved, ongoing research (refer e.g. to ICML 2018
tutorial)

15 / 40
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Policy Gradient algorithms

I Motivation: What if the action space is very large?

I Idea: Parametrize policy as π(a|s, ~θ) and learn it directly via gradient ascent
I Objective function: Expected reward over all possible trajectories

V (~θ) =
∑

(s0,a0,r0),...,(sT ,aT ,rT )

( T∑
t=1

rt

)
·
( T−1∏
t=1

p(st+1|st, at) · π(at|st, ~θ)
)

I Gradient:

∇~θV (~θ)
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Gridworld Example

state ↑ � 	

66.67% 16.67% 16.67%
66.67% 16.67% 16.67%
66.67% 16.67% 16.67%
66.67% 16.67% 16.67%
66.67% 16.67% 16.67%
66.67% 16.67% 16.67%
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Gridworld Example

state ↑ � 	

71.75% 14.42% 13.83%
49.25% 14.62% 36.12%
69.66% 14.20% 16.14%
86.69% 7.02% 6.29%
41.77% 44.98% 13.25%
76.10% 12.89% 11.01%
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Gridworld Example

state ↑ � 	

77.90% 12.35% 9.74%
30.70% 8.97% 60.33%
78.66% 10.89% 10.45%
92.45% 4.56% 2.98%
57.98% 39.00% 3.03%
84.49% 8.99% 6.52%
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Gridworld Example

state ↑ � 	

82.29% 10.54% 7.17%
18.96% 5.39% 75.65%
85.21% 7.55% 7.25%
95.21% 2.88% 1.91%
70.34% 29.41% 0.24%
89.52% 5.38% 5.10%
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Gridworld Example

state ↑ � 	

87.96% 7.16% 4.88%
11.45% 3.54% 85.01%
88.25% 6.63% 5.12%
96.31% 2.40% 1.29%
34.09% 65.88% 0.03%
93.45% 3.36% 3.19%
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Gridworld Example

state ↑ � 	

90.76% 5.45% 3.79%
8.11% 2.35% 89.54%
88.94% 7.41% 3.65%
97.28% 1.77% 0.95%
47.54% 52.46% 0.00%
94.06% 2.48% 3.45%
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Gridworld Example

state ↑ � 	

91.31% 5.62% 3.07%
6.33% 1.83% 91.84%
91.73% 5.54% 2.73%
97.14% 2.10% 0.76%
46.22% 53.78% 0.00%
95.37% 1.94% 2.69%
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Gridworld Example

state ↑ � 	

92.91% 4.59% 2.50%
5.28% 1.51% 93.21%
93.43% 4.40% 2.17%
97.74% 1.66% 0.60%
42.06% 57.94% 0.00%
96.03% 1.57% 2.39%

17 / 40



Gridworld Example

state ↑ � 	

93.72% 4.15% 2.12%
4.36% 1.25% 94.39%
93.58% 4.65% 1.78%
97.47% 2.04% 0.50%
17.41% 82.59% 0.00%
95.82% 1.32% 2.86%
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Gridworld Example

state ↑ � 	

94.33% 3.84% 1.83%
3.78% 1.08% 95.14%
94.64% 3.87% 1.48%
96.26% 3.34% 0.40%
20.57% 79.43% 0.00%
96.48% 1.11% 2.41%

17 / 40



Gridworld Example

state ↑ � 	

95.08% 3.33% 1.59%
3.25% 0.93% 95.82%
94.52% 4.16% 1.32%
96.60% 3.12% 0.29%
13.86% 86.14% 0.00%
96.90% 1.06% 2.05%
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Practical Examples



Practical Example: AlphaGo (Silver et al. 2016)

board state s

va
lu
e
ne
t

v ∈ [0, 1]

win probability/value Monte Carlo Tree Search

st

st+1

st+2st+2

st+1

st+2st+2

po
lic
y
ne
t

π(a|s) ∈ [0, 1]|A|
policy

I Train value net to predict outcome of past games
I Train policy net to predict moves based on past games
I Use both nets to guide Monte Carlo Tree Search (MCTS)

; i.e. try moves with
highest possible future value that are still probable

I Note: Either value net or policy net would suffice to play the game, but MCTS
yields stronger moves
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Practical Example: AlphaStar (Vinyals et al. 2019)

I Grandmaster-level AI for 1vs1 StarCraft play

I System architecture too complex to cover here; key points: much more memory
required than in AlphaGo, very different action space, real-time requirements

I Training starts off with imitation learning and then improves via self-play and
reinforcement learning

I Key issue in training: Rock-paper-scissors principle

π

Rock paper scissors by Enzoklop; usage according to CC-BY-SA-3.0
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required than in AlphaGo, very different action space, real-time requirements
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I Key issue in training: Rock-paper-scissors principle

π
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Ethics in ML



The challenge of ethical mathematical models

Models can have many ethically positive impacts on society:

I predict and prevent dangerous situations (e.g. climate change)

I limit human subconscious bias

I make decision processes transparent and explicit

I reveal subtle patterns of ethical violations (e.g. organized crime, discrimination)

I inform our understanding of impacts of our actions
. . . but they can also be dangerous.
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Case Study: 2007-2009 financial crisis (Thakor 2015)

I Financial institutions used risk scores to guide investment decisions

I Models to generate such scores were systematically flawed and underestimated risk
(e.g. by independence assumptions on defaults)

I Flaws were not apparent, though, because system appeared stable as long as
general trust was high

I As soon as trust eroded, system immediately broke down

⇒ (ML) models contributed to 2007-2009 financial crisis
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Case Study: COMPAS (Angwin et al. 2016)

I System to predict risk of recidivism to decide on bail or not

I ProPublica research revealed that Black people received much higher risk scores,
even if they did not reoffend (false positives)

I Conversely, white people received lower risk scores, even if they did reoffend (false
negatives)

⇒ Grounds to accuse system of racial bias
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Case Study: Predictive Policing (Ensign et al. 2018)

I Many US cities employ models to predict the location of future crimes based on
past crime records

I This heightens police attention on predicted locations

I Could thus lead to higher number of reports and even more predictions

⇒ Police attention concentrated on few areas
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Case Study: Amazon recruiting tool (Dastin 2018)

I Amazon trained a model to predict job success probability from resumes for
software engineers

I Due to patterns in past data, the model predicted higher job success for men
compared to women

I Amazon scrapped the model before applying it
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Case Study: Austrias Unemployment Agency (Dornis 2018)

I Unemployment agency predicts hiring probability from features including gender
and age

I ’lowest class’ of predicted probability could receive less support

I Older women receive lower scores

⇒ Decreases hiring probability further
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Case Study: Face Recognition (Lohr 2018)

I Face recognition software has been systematically shown to misidentify women
more than men and Black people more than white people

I Particularly controversial: ’Gorilla’ label by a Google software in 2015 (Hern 2018)

I Concerning potential applications: Predict IQ from images, criminality, identifying
terrorists for drone strikes
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Let’s try to structure

effects/harms

group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness

individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness

stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms

biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation

label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions

feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete!

(e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete! (e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete! (e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete! (e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Let’s try to structure

effects/harms group unfairness individual unfairness stereotypes

causes/mechanisms biased data

representation label noise

wrong model assumptions feedback loops

I This picture is incomplete! (e.g. harms: privacy, information asymmetry; causes:
bugs, blind trust)

I Often, multiple causes interact

I Harms depend on socio-technical embedding (i.e. societal/institutional influence
of system predictions)

29 / 40



Definition: Our scenario

I Task: Design a binary classifier f

that distributes a desirable (limited) resource
(jobs, loans, good risk scores, getting free on bail, . . .)

I Input x ∈ X : Applicants for the resource (described by features)

I Applicants also have group labels ~c ∈ {0, 1}C (i.e. being male, being female,
being Black, being older than 60, . . .)

I Output f(x) ∈ [0, 1]: ’success probability’, where higher values mean higher
probability of ’deserving’ the resource

I Training data: D = {(x1,~c1, y1), . . . , (xN ,~cN , yN )} of past applicants and success
labels yi ∈ {0, 1}
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Scenario illustration
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Fairness Definitions

I Threshold fairness: All individuals should have the same classifier (with low error)
(Corbett-Davies and Goel 2018)

I Individual fairness: Similar individuals should receive similar predictions (Dwork
et al. 2012)

I Process fairness: Group membership should not (directly, causally) influence
prediction (Grgić-Hlača et al. 2016; Kilbertus et al. 2017)

I Demographic parity: Predictions should be statistically independent of group
membership (i.e. all groups get the same mean prediction; Dwork et al. 2012)

I Equalized odds: Predictions should be statistically independent of group
membership conditioned on label (i.e. all groups have same classification error;
Hardt, Price, and Nati Srebro 2016)
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Illustration: Demographic parity vs Equalized Odds
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Dynamic Fairness (Paaßen et al. 2019)

I Definition: A model f is dynamically fair if it gets as close as possible to
demographic parity in the long run

I Key insight: Even a 100% accurate classifier

, which is fair to all standards except
demographic parity, is dynamically unfair, if classifier decisions influence future
labels in a positive feedback loop

I Side note: Competing models with varying results exist (e.g. Hu and Chen 2018;
Mouzannar, Ohannessian, and Nathan Srebro 2019; Creager et al. 2019)
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A dynamic model for automatic decision making

1. sample true scores from group-specific distributions
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Update Formula

I Assume group-specific means µtc / µ
t
¬c at time t.

I Set acceptance rates P tc / P t¬c such that top n people get accepted

I Update means: (
µt+1
c

µt+1
¬c

)
= (1− α) ·

(
µtc
µt¬c

)
+ β ·

(
P tc
P t¬c

)
where α ∈ [0, 1], β > 0 are hyper-parameters.
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Dynamical system
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Exponential distribution, α = 0.5, β = 5, m¬c = 2 ·mc, n/m = 0.167.
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Dynamical system under demographic parity
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Qualitative findings

I Equilibria where all resources go to one group tend to be stable (across many
distributions)

I Equality is possible but instable (across many distributions)

I Demographic parity solves both issues: Only single stable equilibrium at equality

⇒ yay for affirmative action policies
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Summary

I Fairness in ML is a young but exploding and broad topic

I Dissenting opinions on definitions, analytic tools, and policies

I Close to consensus: Accuracy is not enough, breadth of views is required, fairness
must be incorporated through the entire lifecycle (Myers West, Whittaker, and
Crawford 2019; Smuha 2019)

I My two cents: Long-term dynamics remain understudied and reveal a need for
stricter policies (e.g. affirmative action)
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