Introduction to Machine Learning
Session 1: The Basics of Optimization, Probability, and Machine Learning

Benjamin PaaBen
The University of Sydney

IK 2020, Giinne

THE UNIVERSITY OF

SYDNEY

1/55

https://creativecommons.org/licenses/by-sa/3.0

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...)

2/55

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data

2/55

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data that generalize to test data.

2/55

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data that generalize to test data.

If you show me a data set of example inputs and outputs (z1,41), ..., (T1,Ym),

2/55

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data that generalize to test data.

If you show me a data set of example inputs and outputs (z1,41), ..., (1, Ym), machine
learning means to automatically find a function f,

2/55

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data that generalize to test data.

If you show me a data set of example inputs and outputs (z1,41), ..., (1, Ym), machine
learning means to automatically find a function f, such that f(x;) ~ y; for all
examples

2/55

What is Machine Learning?

Definition (roughly)

Machine learning is concerned with methods to automatically discover patterns
(rules, regularities, clusters, ...) from training data that generalize to test data.

If you show me a data set of example inputs and outputs (z1,41), ..., (1, Ym), machine
learning means to automatically find a function f, such that f(x;) ~ y; for all
examples and for new, unseen data (generalization).

2/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

3/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

10

S N = O o
T
[©]
|

3/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

10

S N = O o
T

3/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

10

S N = O o
T

3/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

10

S N = O o
T

3/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

10

S N R O
T

Which one is best?

3/55

Example: Regression

Example: (1,2),(3,4),(7,8). What is f7

10

S N R O
T

Which one is best? = Depends on what generalizes to new data

3/55

Why bother with learning about ML?

» ML is a useful toolbox for many tasks (method field, similar to statistics)

4/55

https://www.natureindex.com/news-blog/google-scholar-reveals-most-influential-papers-research-citations-twenty-nineteen

Why bother with learning about ML?

» ML is a useful toolbox for many tasks (method field, similar to statistics)

» ML is a hype in research (Crew, 2019), business, and society more broadly

4/55

https://www.natureindex.com/news-blog/google-scholar-reveals-most-influential-papers-research-citations-twenty-nineteen

Why bother with learning about ML?

» ML is a useful toolbox for many tasks (method field, similar to statistics)

» ML is a hype in research (Crew, 2019), business, and society more broadly - and
it's good to know capabilities and limitations

4/55

https://www.natureindex.com/news-blog/google-scholar-reveals-most-influential-papers-research-citations-twenty-nineteen

Learning objectives of this course

» Conceptual knowledge: Most important ML concepts and how they are related

5/55

Learning objectives of this course

» Conceptual knowledge: Most important ML concepts and how they are related

» Operational knowledge: How to do ML (at least on a high level; or with
voluntary programming tasks)

5/55

Learning objectives of this course

» Conceptual knowledge: Most important ML concepts and how they are related

» Operational knowledge: How to do ML (at least on a high level; or with
voluntary programming tasks)

> ML literacy: De-mystifying ML and gauging the capabilities of ML approaches

5/55

Overview of ML

Artificial Intelligence

6/55

Overview of ML

Artificial Intelligence

6/55

Overview of ML

Artificial Intelligence

6/55

Overview of ML

Artificial Intelligence

6/55

Overview of ML

Artificial Intelligence

ca. 290.000 papers since 2015
ca. 630.000 papers since 2015
ca. 73.000 papers since 2015

ca. 300.000 papers since 2015

acc. to google scholar

6/55

Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

7/55

Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. "Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

7/55

Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. "Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

3. "Modern” ML and neural networks: Neural network modules, recipes for neural
networks, adversarial attacks

7/55

Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. "Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

3. "Modern” ML and neural networks: Neural network modules, recipes for neural
networks, adversarial attacks

4. Reinforcement learning and ethics

7/55

Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. "Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

3. "Modern” ML and neural networks: Neural network modules, recipes for neural
networks, adversarial attacks

4. Reinforcement learning and ethics

Unfortunately not covered: Bayesian ML, Graphical Models, Causality, random forests,

7/55

Structure

1. Basic concepts: Functions, Learning algorithms, Learning via optimization, linear
regression (as example), regularization, probability theory, machine learning theory,
how to design a ML experiment

2. "Classic” ML Tasks and Methods: The distance perspective on ML, Regression,
Classification, Dimensionality Reduction, Clustering

3. "Modern” ML and neural networks: Neural network modules, recipes for neural
networks, adversarial attacks

4. Reinforcement learning and ethics

Unfortunately not covered: Bayesian ML, Graphical Models, Causality, random forests,

Note: One homework task for each session

7/55

Basic Mathematical Concepts

THE UNIVERSITY OF

SYDNEY

Functions

Definition: Function

Let X and) be sets (e.g. the set of all possible integers).

9/55

Functions

Definition: Function

Let X and) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y €), such that no z occurs in two tuples.

9/55

Functions

Definition: Function
Let X and) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y €), such that no z occurs in two tuples.

X y
1 1
2 2
3 3

9/55

Functions

Definition: Function

Let X and) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y €), such that no z occurs in two tuples.

9/55

Functions

Definition: Function

Let X and) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y €), such that no z occurs in two tuples.

X Yy :
. o We define f(x) as y such that
f{(1172):(253)7(5174)7"'} (z,y) € f.
\
2 \ 2
3 \ 3

9/55

Functions

Definition: Function

Let X and) be sets (e.g. the set of all possible integers). Then, a function f is a set
of tuples (z,y) where z € X', y €), such that no z occurs in two tuples.

X Yy :
) L We define f(z) as y such that
f=1(1,2),(2,3),(3,4),...} f(@)asy
(z,y) € [.
1 \ 1
2 2 Intuitively, a function is some
\ kind of machine or program
3 3 which returns a deterministic
\ output for some input.

9/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets.

10/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a
dataset from X x).

10/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a

dataset from X x).
A learning algorithm A is a function that maps any data set D to a function

fp: X —=).

10/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a
dataset from X x).

A learning algorithm A is a function that maps any data set D to a function

fp: X —=).

We also call the output fp = A(D) a model on D according to A.

10/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a

dataset from X x).
A learning algorithm A is a function that maps any data set D to a function

fp: X —=).
We also call the output fp = A(D) a model on D according to A.

> Intuitively, a learning algorithm estimates the relationship between the sets X' and
Y in form of a function.

10/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a

dataset from X x).
A learning algorithm A is a function that maps any data set D to a function

fp: X =).
We also call the output fp = A(D) a model on D according to A.

> Intuitively, a learning algorithm estimates the relationship between the sets X' and
Y in form of a function.

» A good algorithm ensures that for all (z,y) € D, fp(x) =~ y.

10/55

Learning Algorithms

Definition: Learning algorithm

Let X and) be some sets. Then, we call any finite set D = {(z1,y1),..., (zn,yn)} a

dataset from X x).
A learning algorithm A is a function that maps any data set D to a function

fp: X =).
We also call the output fp = A(D) a model on D according to A.

> Intuitively, a learning algorithm estimates the relationship between the sets X' and
Y in form of a function.

» A good algorithm ensures that for all (z,y) € D, fp(x) =~ y.

» ... and that this holds for new data as well

10/55

Learning Algorithms Illustration

The simplest possible baseline algorithm: Always return the mean of the outputs, i.e.:
.A(D) = fp with fp(z) = ﬁ . Z(%y)epy

11/55

Learning Algorithms Illustration

The simplest possible baseline algorithm: Always return the mean of the outputs, i.e.:
.A(D) = fp with fp(z) = ﬁ . Z(%y)epy

10

S N = O
T
@
|

11/55

Learning Algorithms Illustration

The simplest possible baseline algorithm: Always return the mean of the outputs, i.e.:
.A(D) = fp with fp(z) = ﬁ . Z(%y)epy

10

S N = O
T
@
|

11/55

Loss function

Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).

12/55

Loss function

Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).

» Intuitively, £(D, f) tells us how badly f reproduces the data in D

12/55

Loss function

Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).

» Intuitively, £(D, f) tells us how badly f reproduces the data in D

» Most common example: Root mean square error (RMSE):

truse (D, f) = % S (- f@)? (1)

(z,y)€D

12/55

Loss function

Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).

» Intuitively, £(D, f) tells us how badly f reproduces the data in D

» Most common example: Root mean square error (RMSE):

truse (D, f) = % S (- f@)? (1)

(z,y)€D

12/55

Loss function

Definition: Loss function
A loss function or error function £ is a function that maps a dataset D and a model
f to some real number ¢(D, f).

» Intuitively, £(D, f) tells us how badly f reproduces the data in D

» Most common example: Root mean square error (RMSE):

truse (D, f) = % S (-) (1)

(z,y)€D

12/55

Illustration: RMSE

10

13/55

Illustration: RMSE

10 |
8| trwse(D, 1) = 5 (32 + (=32 + () 1|
o f@) =% 21
=
41 1_8 -2 |
3
20 a
0 L | | | | | |

13/55

Illustration: RMSE

10

- lrmse(D, f) = \/%(02“‘02"‘02) =0

13/55

Optimization

THE UNIVERSITY OF

SYDNEY

Learning as Loss Minimization

» Most learning algorithms A are based on loss minimization, i.e.: A(D) is defined
as a model f that minimizes some loss ¢(D, f)

15/55

Learning as Loss Minimization

» Most learning algorithms A are based on loss minimization, i.e.: A(D) is defined
as a model f that minimizes some loss ¢(D, f)

» In other words: We want to solve the opimization problem

i oD, f) (2)

15/55

Learning as Loss Minimization

» Most learning algorithms A are based on loss minimization, i.e.: A(D) is defined
as a model f that minimizes some loss ¢(D, f)

» In other words: We want to solve the opimization problem

i oD, f) (2)

> Different algorithms differ in loss, optimization strategy, and model class F

15/55

Learning as Loss Minimization

» Most learning algorithms A are based on loss minimization, i.e.: A(D) is defined
as a model f that minimizes some loss ¢(D, f)

» In other words: We want to solve the opimization problem

i oD, f) (2)

> Different algorithms differ in loss, optimization strategy, and model class F

» Focus here mostly on model classes, but optimization strategies are a research field
of their own (PaaBen 2019)

15/55

Gradient Descent

Optimization problem:

min £(0)

16 /55

Gradient Descent

Optimization problem:
min ¢(0
0eR ()

1. Start with some initial 6

16 /55

Gradient Descent

Optimization problem:

min £(0)

1. Start with some initial 6

2. Go slightly 'down’ the function:

Orp1 < O — - (%Z(Qt)

16 /55

Gradient Descent

Optimization problem:

min £(0)

1. Start with some initial 6

2. Go slightly 'down’ the function:

Orp1 < O — - (%Z(Qt)

3. Increase t by 1.

16 /55

Gradient Descent

Optimization problem:

min £(0)

1. Start with some initial 6

2. Go slightly 'down’ the function:
Opi1 < 0r — 1+ 55-0(6)

3. Increase t by 1.

4. Repeat 2-3 until gradient is very small.

16 /55

Gradient Descent

00) = 0% Z0(0) =20
Optimization problem: (0) a0t(0)

min £(0) 81 h
0eR
6 [-
1. Start with some initial 6y S h
X0
2. Go slightly 'down’ the function:
Orp1 0 — 1 35:0(0) 20 i
3. Increase t by 1. 0 .
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Gradient Descent

00) = 0% Z0(0) =20
Optimization problem: (0) a0t(0)

in £(60 81 a
min £(6)
6 - |
1. Start with some initial 6g S to |
)

2. Go slightly 'down’ the function:

Ori1 = 0 =1 - 59-0(0) 20 |
3. Increase t by 1. 0 .
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Gradient Descent

Optimization problem:

min £(0) 81 h
0eR
6 [-
1. Start with some initial 6y S h
X0
2. Go slightly 'down’ the function:
Orp1 0 — 1 35:0(0) 20 i
3. Increase t by 1. 0 :
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Gradient Descent

Optimization problem:

min £(0) 81 h
0eR
6 [-
1. Start with some initial 6y S h
X0
2. Go slightly 'down’ the function:
Orp1 0 — 1 35:0(0) 20 i
3. Increase t by 1. 0 :
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Gradient Descent

Optimization problem:

min £(0) 81 h
0eR
6 [-
1. Start with some initial 6y S h
X0
2. Go slightly 'down’ the function:
Orp1 0 — 1 35:0(0) 20 i
3. Increase t by 1. 0 .
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Gradient Descent

Optimization problem:

min £(0) 81 h
0eR
6 [-
1. Start with some initial 6y S h
X0
2. Go slightly 'down’ the function:
Orp1 0 — 1 35:0(0) 20 i
3. Increase t by 1. 0 :
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Gradient Descent

Optimization problem:

min £(0) 81 h
0eR
6 [-
1. Start with some initial 6y S h
X0
2. Go slightly 'down’ the function:
Orp1 0 — 1 35:0(0) 20 i
3. Increase t by 1. 0 :
| | |
4. Repeat 2-3 until gradient is very small. —2 0 2
0

16 /55

Example: Constant Functions

1. Consider the model class of constant functions:
F ={folfo(x) =0 for all x € X and some 6 € R}

17 /55

Example: Constant Functions

1. Consider the model class of constant functions:
F ={folfo(x) =0 for all x € X and some 6 € R}

2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss

17 /55

Example: Constant Functions

1. Consider the model class of constant functions:
F ={folfo(x) =0 for all z € X and some 6 € R}
2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss

3. Optimize 0 via gradient descent

17 /55

Example: Constant Functions

1. Consider the model class of constant functions:
F ={folfo(x) =0 for all x € X and some 6 € R}

2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss

3. Optimize 0 via gradient descent
T T T T T T

8| 0 :

x 17 /55

Example: Constant Functions
1. Consider the model class of constant functions:
F ={folfo(x) =0 for all z € X and some 6 € R}
2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss
3. Optimize 0 via gradient descent

T T T T T T
8- o | 8 I |
6| . <6 .
8
af : : B 4| 1
=
&
2% f@=1 | 2| |
| | | | | | O | | | | |
"0 2 4 6 8 10 0 2 4 6 8

T 0 1755

Example: Constant Functions
1. Consider the model class of constant functions:
F ={folfo(x) =0 for all z € X and some 6 € R}
2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss
3. Optimize 0 via gradient descent

T T T T T T
8- o | 8 I |
6| . <6 .
S)
s : : B 4| 1
>
&
20 p@)-1 1 2l |
| | | | | | O | | | | |
002 41 6 s 10 0 2 4 6 8

T 0 1755

Example: Constant Functions
1. Consider the model class of constant functions:
F ={folfo(x) =0 for all z € X and some 6 € R}
2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss
3. Optimize 0 via gradient descent

T T T T T T
8- o | 8 I |
6| : <6 .
S bo

4+ o B v o4 th N
=
&

2 ° J 21 ,

\ \ \ \ \ \ 0 ‘ : ‘ : :
0 0 2 4 6 8 10 0 2 4 6 8

T 0 1755

Example: Constant Functions
1. Consider the model class of constant functions:
F ={folfo(x) =0 for all z € X and some 6 € R}
2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss
3. Optimize 0 via gradient descent

T T T T T T
81 o | 8 |- |
6 | <= 6| :

S
4+ e : G 4 8
=
o
<0
2 e J 21 |

\ \ \ \ \ \ 0 ‘ : ‘ : :

0 0 2 4 6 8 10 0 2 4 6 8

T 0 17 /55

Example: Constant Functions
1. Consider the model class of constant functions:
F ={folfo(x) =0 for all z € X and some 6 € R}
2. Consider the data set D = {(1,2),(3,4),(7,8)} and RMSE loss
3. Optimize 0 via gradient descent

T T T T T T
81 o | 8 |- |
6 | <= 6| :

S
4+ e : G 4 8
=
o
<0
2 e J 21 |

\ \ \ \ \ \ 0 ‘ : ‘ : :

0 0 2 4 6 8 10 0 2 4 6 8

T 0 17 /55

Example 2: Cosine Functions

1. Consider the model class F = { fg|fo(x) = 10 - cos(x -) for some 6 € R}

18 /55

Example 2: Cosine Functions

1. Consider the model class F = {fy|fo(x) = 10 - cos(x - 0) for some 6 € R}
2. same data and loss as before

18 /55

Example 2: Cosine Functions

1. Consider the model class F = { fg|fo(x) = 10 - cos(x -) for some 6 € R}
2. same data and loss as before

10 -

18 /55

Example 2: Cosine Functions

1. Consider the model class F = { fg|fo(x) = 10 - cos(x -) for some 6 € R}

2. same data and loss as before

10 | * 15
5, |
< 10 |
> 0 - Y
W
2]
-5| 1 E 5[:
W0
—10| |
0 | | | |
. 0 1 2 3
0

18 /55

Example 2: Cosine Functions

1. Consider the model class F = { fg|fo(x) = 10 - cos(x -) for some 6 € R}

2. same data and loss as before

lrivise (D, fo)

15

10

0o

18 /55

Example 2: Cosine Functions

1. Consider the model class F = {fy|fo(x) = 10 - cos(x - 0) for some 6 € R}
2. same data and loss as before

10

lrivise (D, fo)

15

10

18 /55

Example 2: Cosine Functions

1. Consider the model class F = {fy|fo(x) = 10 - cos(x - 0) for some 6 € R}

2. same data and loss as before

10

lrivise (D, fo)

15

10

18 /55

Example 2: Cosine Functions

1. Consider the model class F = { fy|fo(x) = 10 - cos(x - §) for some 6 € R}

2. same data and loss as before

10

lrivise (D, fo)

15

10

18 /55

Example 2: Cosine Functions

1. Consider the model class F = { fy|fo(x) = 10 - cos(x - §) for some 6 € R}

2. same data and loss as before

10

lrivise (D, fo)

15

10

18 /55

Challenges in optimization

» saddle points, sudden gradient shifts,
local optima, ...

19/55

Challenges in optimization

15
» saddle points, sudden gradient shifts,
local optima, ... = 10 i
8
Ll
[9)]
2 5| :
S}
0 | | | |
0 1 2 3
0

19/55

Challenges in optimization

15
» saddle points, sudden gradient shifts,
local optima, ... = 10 i
8
Ll
[9)]
2 5| :
S}
0 | | | |
0 1 2 3
0

19/55

Challenges in optimization

15
» saddle points, sudden gradient shifts,
local optima, ... = 10 i
8
L
2]
Z 5[|
0
0 | | | |
0 1 2 3
0

19/55

Challenges in optimization

15
» saddle points, sudden gradient shifts,
local optima, ... = 10 i
8
L
2]
Z 5[|
0
0 | | | |
0 1 2 3
0

19/55

Challenges in optimization

15
» saddle points, sudden gradient shifts,
local optima, ... S 10 i
» still problematic for better algorithms, %
e.g. ADAM, conjugate gradient, Q2
L-BFGS (PaaRen 2019) & 5 il
0 | | | |
0 1 2 3
0

19/55

Challenges in optimization

15

» saddle points, sudden gradient shifts,

local optima, ... S 10 i
» still problematic for better algorithms, %

e.g. ADAM, conjugate gradient, Q2

L-BFGS (PaaRen 2019) & 5 il
» So, when is optimization “nice’"?

0 0 1 2 3
0

19 /55

Challenges in optimization

» saddle points, sudden gradient shifts,
local optima, ...

» still problematic for better algorithms,
e.g. ADAM, conjugate gradient,
L-BFGS (Paalen 2019)

» So, when is optimization “nice’"?

= convex optimization

lrvse (D, fo)

15

10

19 /55

Convex Optimization

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

20/55

Convex Optimization

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

fo-z+(1-0) y) <a-L)+ (1 -a))

> Intuitive: Any line between two points on the
function graph is above the function graph

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘
» Equivalent: The gradient is below 41 -
=
S
2 [-

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘
» Equivalent: The gradient is below 41 -
=
S
2 [-

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘
» Equivalent: The gradient is below 41 -
= Gradient descent finds global optima =
<
2 [-

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘
» Equivalent: The gradient is below 41 -
= Gradient descent finds global optima =
<
2 [-

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph ‘ ‘ ‘
» Equivalent: The gradient is below 41 -
= Gradient descent finds global optima =
> Also equivalent: Second derivative is always = 9l i
positive
| | |

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

la-z+(1—a) y) <a-lz)+(1—a) y)

> Intuitive: Any line between two points on the convex function
function graph is above the function graph

» Equivalent: The gradient is below 41 -
= Gradient descent finds global optima =

> Also equivalent: Second derivative is always 9
positive

= Gradient descent is “smooth” ‘ ‘ ‘

20/55

Convex Optimization

Convexity

A function £ : R™ — R is called convex if for all z,y € R™ and all a € [0, 1] it holds:

v |

v

fo-z+(1-0) y) <a-L)+ (1 -a))

Intuitive: Any line between two points on the
function graph is above the function graph

Equivalent: The gradient is below

Gradient descent finds global optima

Also equivalent: Second derivative is always
positive

Gradient descent is “smooth”

Pro tip: Design your loss to be convex

convex function

20/55

Linear Regression

THE UNIVERSITY OF

SYDNEY

Introduction

One-dimensional linear regression model class:

f:{fw|fw(x):w‘$’ wER}

22/55

https://cakeinvasion.de/

Introduction

One-dimensional linear regression model class:

]T::{fhwfw(x):: w - x, U’E}R}

Example: | wish to bake x vegan brownies.

My recipe is:
ingredient amount
Zucchini [g] 150
Flour [g] 60
Cocoa powder [g] 15
Sugar [g] 60
Oil [ml] 15

For full recipe, refer to:

https://cakeinvasion.de/

22/55

https://cakeinvasion.de/

Introduction

One-dimensional linear regression model class:

]T::{fhwfw($):: w - x, UJE}R}

Example: | wish to bake x vegan brownies.

My recipe is:
ingredient amount
Zucchini [g] 150 » How much of each ingredient do |
Flour [g] 60 -
need to buy for x portions?
Cocoa powder [g] 15
Sugar [g] 60
Oil [ml] 15

For full recipe, refer to:

https://cakeinvasion.de/

22/55

https://cakeinvasion.de/

Introduction

One-dimensional linear regression model class:

]T::{fhwfw($):: w - x, UJE}R}

Example: | wish to bake x vegan brownies.

My recipe is:
ingredient amount
Zucchini [g] 150 » How much of each ingredient do |
Flour [g] 60 -
need to buy for x portions?
Cocoa powder [g] 15
Sugar [g] 60 > for each ingredient, one linear model
Oil [ml] 15 with input x and coefficient w in table

For full recipe, refer to:

https://cakeinvasion.de/

22/55

https://cakeinvasion.de/

Generalized Linear Regression

» Assume a function ¢ : X — R"” that maps inputs x to n-dimensional feature
vectors ¢(z)

23/55

Generalized Linear Regression

» Assume a function ¢ : X — R"” that maps inputs x to n-dimensional feature
vectors ¢(z)

» Model class of generalized linear regression:
Farr = {fal fa(w) = 0" - ¢(x), @€ R"}

where w1 - ¢(z) = wy - $1(x) + ...+ wy - ou(T)

23/55

Generalized Linear Regression

» Assume a function ¢ : X — R"” that maps inputs x to n-dimensional feature
vectors ¢(x)

» Model class of generalized linear regression:
Farr = {fal fa(w) = 0" - ¢(x), @€ R"}

where w1 - ¢(z) = wy - $1(x) + ...+ wy - ou(T)

> Example: You are the inputs and ¢ maps to your respective body height, pinky
finger length, and favourite color (n = 3).

23/55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given

24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE(f)

24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE(f)

> First trick: Rephrase the problem

min > (@ - ¢(a;) - i)

GER®
v i—1

24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE(f)

> First trick: Rephrase the problem
. » 2
min Z (wT - p(2i) — i)

GER®
v i—1

» Consider the gradient (1st derivative) and Hessian (2nd derivative):

24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE(f)

> First trick: Rephrase the problem
. » 2
min Y (@7 - d(x;) - yi)

cR»
v i—1

» Consider the gradient (1st derivative) and Hessian (2nd derivative):

N
Vg : (U_jT ' <Z>(Z 2- ¢ xz) W — yz)

24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE(f)

> First trick: Rephrase the problem

min >~ (@ p(ai) — v;)*

cR»
v i—1

» Consider the gradient (1st derivative) and Hessian (2nd derivative):
N

vu’iz (wT Z 2. ¢ xz) W — yz)

i=1

N
Vo> (@ dwi) - ui) —2Z¢>xz ()"

=1 24 /55

Generalized Linear Regression: Derivation

» Assume data set D = {(z1,y1),..., (zn,yn)} and feature map ¢ are given, where
Y1,...,yn are real numbers (e.g. your shoe size)

» Then, we wish to solve

min £ D,
feFGLR RMSE(f)

> First trick: Rephrase the problem

min >~ (@ p(ai) — v;)*

cR»
v i—1

» Consider the gradient (1st derivative) and Hessian (2nd derivative):
N

vu’iz (wT Z 2. ¢ xz) W — yz)

i=1

N
V?EZ(- (i) — i) —QZQNQ o(z;)T >0 = convex

i

1 24 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!

N
Va Y (@ o) —ui)’ =32 d(a:) - (¢(z)T -7 — yy)
=1 =1

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!

N
Va3 (@ b)) —u) =3 2 d@i) - ()" - — i) =28 - BT -7 —2® -
i=1 i=1

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!
al 2
Vi > (@ dla) —yi)” = 2 (@) (p(zi)" -0 —y;) =28 - " - —2® - i
i=1 i=1

where ® = (¢(z1),...,0(xN)), T = (y1,.--,yn)".

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!

N

Vi > (0" o) —u:)" =2 p(a:) - (pla)T 6 — ;) =28 T i — 28 -
=1 =1

)T

where ® = (§(x1),...,0(zn)), = (Y1, -, yn

> 28 8T . — 287 =0

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!

—

N
Vi > (0" o) —u:)" =2 p(a:) - (pla)T 6 — ;) =28 T i — 28 -
=1 =1

where ® = (¢(z1),...,0(xN)), T = (y1,.--,yn)".

—

> 23 BT i 2B G20 = &= (B -BT) . B g

25 /55

Generalized Linear Regression: Derivation (2)

» Recall: If the loss is convex, any point with vanishing gradient is global optimum

> Let's try to find such a point analytically!
al 2
Vi > (@ dla) —yi)” = 2 (@) (p(zi)" -0 —y;) =28 - " - —2® - i
i=1 i=1

where ® = (¢(m1), e ,qb(a:N)), 7= (y1,...,yn)T.
> 28 BT .t — 2B f=0 = 0= (B B)- B

» AGr(D) = fu-

25 /55

Example

10

26 /55

Example

10

> Let's start with ¢(x) = =

26 /55

Example

10

> Let's start with ¢(x) = =

26 /55

Example

10

> Let's start with ¢(x) = =
= Does not work ®

26 /55

Example

10
8+ ®
> Let's start with ¢(x) = =
61 = Does not work @
4l ° i > We need a constant term; so let's try
¢(z) = (1,2)"

2| o .
0 | | |

0 2 4 6 8

26 /55

Example

10

> Let's start with ¢(x) = =
= Does not work ®

> We need a constant term; so let's try
¢(z) = (1,2)" =
fx) =" ¢(x) =w -1 +wy -z

26 /55

Example

> Let's start with ¢(x) = =
= Does not work ®

> We need a constant term; so let's try
¢(z) = (1,2)" =
fx) =" ¢(x) =w -1 +wy -z

26 /55

Example

> Let's start with ¢(x) = =
= Does not work ®

> We need a constant term; so let's try
¢(z) = (1,2)" =
fx) =" ¢(x) =w -1 +wy -z
= ©

26 /55

Polynomial Regression

Let's consider ¢, (x) = (1,2, 22,...,2").

——degree 1

27 /55

Polynomial Regression

Let's consider ¢, (x) = (1,2, 22,...,2").
T T ‘ ‘
——degree 1
1 —— degree 3 ||

27 /55

Polynomial Regression

Let's consider ¢, (x) = (1,2, 22,...,2").
T T T T
——degree 1
1 —— degree 3 ||
— degree 9

27 /55

Polynomial Regression

Let's consider ¢, (x) = (1,2, 22,...,2").
T T T ‘
——degree 1
1 —— degree 3 || Ly I
— degree 9
o
S =
< o05p 3
-1
| | | | 0 | | | |
0 02 04 06 08 1 0 2 4 6 8
T n

27 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0,

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that

minse 7 Lrmse (D, Fn.) < €.

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that

minse 7 Lrmse (D, Fn.) < €.

Generalized Linear Regression is a universal approximator for surprisingly many ¢, e.g.:

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that

minse 7 Lrmse (D, Fn.) < €.

Generalized Linear Regression is a universal approximator for surprisingly many ¢, e.g.:

polynoms
1f |]
0.5 a
0L I ! L]
0 0.5 1

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that
minfef ERMSE(D,]:ne) < €.

Generalized Linear Regression is a universal approximator for surprisingly many ¢, e.g.:

polynoms sine/cosine waves
1[‘ 1 1f]
0.5 - 0 i
0L Jo—1) .
0 0.5 1 0 0.5 1

28 /55

Universal Approximation

Definition: Universal Approximator (roughly)

We call a (parametrized) model class F,, a universal approximator if for any smooth
data set of real numbers D and any € > 0, there exists an n,, such that
minfef ERMSE(D,]:ne) < €.

Generalized Linear Regression is a universal approximator for surprisingly many ¢, e.g.:

polynoms sine/cosine waves Radial Basis Functions

1 [T H 1 [H 1 [T T]

0.5 g 0o <4 0.5} s

0 4 —1F 3 0 |
0 0.5 1 0 0.5 1 0 0.5 1

28 /55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions.

29 /55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:
¢(Z) = (tanh(a@] - Z),...,tanh(@] - £)) for random (1) @,. .., un

29 /55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

20/55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data

20/55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data

> But lower n is more efficient and more interpretable

20/55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data

» But lower n is more efficient and more interpretable = homework task

20/55

Universal Approximation (II)

> Universal approximation also works in multiple dimensions. A simple example:

¢(Z) = (tanh(a@] - Z),...,tanh(a} - Z)) for random (1) @,..., @, = Basic trick
behind neural engineering framework, extreme learning machines, echo state
networks . ..

» For all ¢: Higher n — better approximation on the training data
» But lower n is more efficient and more interpretable = homework task

> Also, lower n is more robust to input noise

20/55

Regularization

THE UNIVERSITY OF

SYDNEY

Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").

——degree 1

31/55

Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").

——degree 1
—— degree 3 ||

31/55

Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").
T T T T
——degree 1
1 —— degree 3 ||
— degree 9

31/55

Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").
T T T T T : :
——degree 1 —— train error
1 —— degree 3 || L l
— degree 9
o
= 0 =
< 05f 3
—1
| | | | 0 | | | |
0 02 04 06 08 1 0 2 4 6 8
x n

31/55

Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").
T T - - I I
——degree 1 —— train error
1 —— degree 3 || Ly —— test error ||
— degree 9
o
= 0 =
< 05p 3
—1
| | | | 0 | | | |
0 02 04 06 0.8 1 0 2 4 6 8
T n

31/55

Polynomial Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2").
T T - T I
——degree 1 —— train error
1 —— degree 3 || Ly —— test error ||
——degree 9
L
= 0 g
< 05p 3
—1
| | | | 0 | | | |
0 02 04 06 0.8 1 0 2 4 6 8
X n

= For high model complexity, model can fit the noise and does not generalize
(overfitting)

31/55

Regularization (1)

> empirically, overfitting behavior relates to extreme parameter values (> 10°)

32/55

Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

32/55

Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

= Punish extreme parameter values (regularization)

32/55

Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

= Punish extreme parameter values (regularization)
l

A\

N
min Z(lﬁTgf)(.Il) —yi)2—|—)\-u7T~w'

min
we i=1

32/55

Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

= Punish extreme parameter values (regularization)

!
al 2
min izl(wT-qb(x@-)—yi) +A-d
45_2Z¢x1 ()" W —y) +2- N0

32/55

Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

= Punish extreme parameter values (regularization)

£
N 2
min izl(wT-qb(x@-)—yi) +A-d
45_2Z¢x1 W —yi) + 2N B
Z—QZgbxz Tox1

32/55

Regularization (1)
> empirically, overfitting behavior relates to extreme parameter values (> 10°)

> ... because the optimization will do anything to decrease the training error even a
tiny bit

= Punish extreme parameter values (regularization)

£
N 2
. T ST =
. N s - .
min ;(w o) —yi) + X0 @
Val =2 ng)xl W —yi) + 2N B
Z—QZgb x;) T4 X-T = sitill convex

32/55

Regularization (I1)

33/55

Regularization (I1)

33/55

Regularization (I1)

33/55

Regularization (I1)

Vel =0
2.0 0T G—D G+2-A-wW=0
@ T+ N-I) - T=d -
=@ T A1) D

33/55

Regularized Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2"), A= 1073,

——degree 1

34 /55

Regularized Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2"), A= 1073,

——degree 1
—— degree 3 ||

34 /55

Regularized Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2"), A= 1073,

——degree 1
—— degree 3 ||
— degree 9

34 /55

Regularized Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2"), A= 1073,

—— train error

——degree 1
lie ©°° —— degree 3 || Ly l
— degree 9
/ Ll
S %
~ 0.5} 8
-1
| | | | 0 | | | |
0 02 04 06 0.8 1 0 2 4 6 8
x n

34 /55

Regularized Regression with Noise

Let's consider ¢, (x) = (1,2, 22,...,2"), A= 1073,

——degree 1 —— train error
lfe ©°° —— degree 3 || Ly —— test error ||
— degree 9
g o
S =
< 05p |
-1
| | | | 0 | | | |
0 02 04 06 0.8 1 0 2 4 6 8
T n

34 /55

Summary

» Generalized linear regression is a powerful tool for prediction, especially with good
feature map ¢

35/55

Summary

» Generalized linear regression is a powerful tool for prediction, especially with good
feature map ¢

» Already illustrates many typical challenges of ML: Underfitting, overfitting,
generalization, model architecture, feature processing, ...

35/55

Summary

» Generalized linear regression is a powerful tool for prediction, especially with good
feature map ¢

» Already illustrates many typical challenges of ML: Underfitting, overfitting,
generalization, model architecture, feature processing, ...

> Success in practice depends on understanding data, features, optimization,
numerics, ...

35/55

Probabilities

THE UNIVERSITY OF

SYDNEY

Generalization Redux

We expect generalization between these

data sets.
1+ [5) QQQ 1
8 ®e ge
o
O' Qg
> 0 3@ b N
5]
0
0
8
1tk |
| | |
0 0.2 0.4 0.8 1

37/55

Generalization Redux

We expect generalization between these

data sets.

1+ [5) QQQ 1

8§ e geo

o

O' Qg
> 0 3@ b N
.O

‘0 5}
1| © i
| | | |

But how about these?

1 oo o (6])
o $.
& ®
= 0 °
?
-1+ o ° °
| | | |
0 0.2 0.4 0.6 0.8
T

37/55

Generalization Redux

We expect generalization between these But how about these?
data sets.
1| o &6e - 1F §oe o o o -
8 %o 8.0 ° ?
°
2! % & ®
> 0° ° : = of ° :
o °
(&)
\O] © ® 9]
—1F ° B —1F o ° ° e o
| | | | | | | |
0 02 04 06 0.8 1 0 02 04 06 08 1
x x

= We only want to generalize only to datasets from the same data source
37/55

Standard Data Generation Model

input (randomly generated)

38/55

Standard Data Generation Model

input (randomly generated)

w .

“true” unknown function (deterministic)

38/55

Standard Data Generation Model

noise (randomly generated)

input (randomly generated)

i

“true” unknown function (deterministic)

38/55

Standard Data Generation Model

noise (randomly generated)

input (randomly generated)

l
z @ y=fla)+e

“true” unknown function (deterministic)

output

38/55

Standard Data Generation Model

noise (randomly generated)

input (randomly generated)

l
z @ y=fla)+e

“true” unknown function (deterministic)

output

> Assumes that the data are identically and independently distributed (i.i.d.)

38/55

Standard Data Generation Model

noise (randomly generated)

input (randomly generated)

l
z @ y=fla)+e

“true” unknown function (deterministic)

output

> Assumes that the data are identically and independently distributed (i.i.d.)

» z, ¢, and y are random variables

38/55

Random Variables

» Intuitively, a random variable X is a variable

39/55

https://en.wikipedia.org/wiki/Probability_space

Random Variables

> Intuitively, a random variable X is a variable that can take a value z from a set
Qx

39/55

https://en.wikipedia.org/wiki/Probability_space

Random Variables

> Intuitively, a random variable X is a variable that can take a value z from a set
Qx with some probability px (z) € [0,1].

39/55

https://en.wikipedia.org/wiki/Probability_space

Random Variables

> Intuitively, a random variable X is a variable that can take a value z from a set
Qx with some probability px (z) € [0,1].

» We call the function px : Qx — R with fzeﬂx px(z)dz =1 a probability
density

39/55

https://en.wikipedia.org/wiki/Probability_space

Random Variables

> Intuitively, a random variable X is a variable that can take a value z from a set
Qx with some probability px (z) € [0,1].

» We call the function px : Qx — R with fzeﬂx px(z)dz =1 a probability
density

> A probability distribution is a function Px that assigns probabilities to subsets
ACQx, ie P(X € A):= [_,px(z)de.

39/55

https://en.wikipedia.org/wiki/Probability_space

Random Variables

> Intuitively, a random variable X is a variable that can take a value z from a set
Qx with some probability px (z) € [0,1].

» We call the function px : Qx — R with fzeﬂx px(z)dz =1 a probability
density

> A probability distribution is a function Px that assigns probabilities to subsets
ACQx, ie P(X € A):= [_,px(z)de.

> We often write p(z) or P(A) for short, if X is clear

39/55

https://en.wikipedia.org/wiki/Probability_space

Random Variables

v

Intuitively, a random variable X is a variable that can take a value z from a set
Qx with some probability px (z) € [0,1].

A\

We call the function px : Qx — R™ with fzeﬂx px(z)dz =1 a probability
density

> A probability distribution is a function Px that assigns probabilities to subsets
ACQx, ie P(X € A):= [_,px(z)de.

> We often write p(z) or P(A) for short, if X is clear

» The precise definition is more complicated! Refer e.g. to Wikipedia

39/55

https://en.wikipedia.org/wiki/Probability_space

N coins

» Consider N random variables X;, each representing a fair coin toss with
Q= {0,1} and px,(0) = px,(1) = 3.

40/55

N coins

» Consider N random variables X;, each representing a fair coin toss with
Q= {Oa 1} and pXi(O) = pXi(]‘) = %
» Then, consider the mean as a random variable, i.e. Y := % (X + .o+ X))

40/55

N coins

» Consider N random variables X;, each representing a fair coin toss with

Q= {0,1} and px, (0) = px, (1) = L.

» Then, consider the mean as a random variable, i.e. Y := % (X + .o+ X))

0.4

py (y)

0.2

40/55

N coins

» Consider N random variables X;, each representing a fair coin toss with

Q= {0,1} and px, (0) = px, (1) = L.

» Then, consider the mean as a random variable, i.e. Y := % (X + .o+ X))

0.4

py (y)

0.2

40/55

N coins

» Consider N random variables X;, each representing a fair coin toss with

Q= {0,1} and px, (0) = px, (1) = L.

» Then, consider the mean as a random variable, i.e. Y := % (X + .o+ X))

0.4 -

py (y)

0.2

40/55

N coins

» Consider N random variables X;, each representing a fair coin toss with

Q2 ={0,1} and px,(0) = px,(1) =

1

3-

» Then, consider the mean as a random variable, i.e. Y := % (X + .o+ X))

py (y)

0.4

0.2

0.4

0.6

40/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)

41/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
> Density:

41/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
> Density:
1 1(z—p)?
p(l‘)_ \/277.0'2 eXp(_2 02)

» 1 and o are parameters of the density called mean and standard deviation

41/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
» Density:
_ 1 1(z—p)?
o) = e (— 5)
» 1 and o are parameters of the density called mean and standard deviation
> We often write p(z) = N (z|p, o) for short

41/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
» Density:
_ 1 1(z—p)?
o) = e (— 5)
» 1 and o are parameters of the density called mean and standard deviation
> We often write p(z) = N (z|p, o) for short

0.4 |

41/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
» Density:
_ 1 1(z—p)?
o) = e (— 5)
» 1 and o are parameters of the density called mean and standard deviation
> We often write p(z) = N (z|p, o) for short

0.4

I
0 ! ! o !
0

41/55

The Gaussian density

» Any sum of many (i.i.d., non-trivial) random variables becomes Gaussian/normally
distributed (central limit theorem)
» Density:
_ 1 1(z—p)?
o) = e (— 5)
» 1 and o are parameters of the density called mean and standard deviation
> We often write p(z) = N (z|p, o) for short

T T T l

0.4 [: |
o |

S 02f T o |
0 a

~4 -3 -2 -1 0 1 2 3 4

41/55

Dependent Densities

» Recall: Data generation model has three random variables: Input = with density
Pz, noise € with density p., and output p, with density p,

42 /55

Dependent Densities

» Recall: Data generation model has three random variables: Input = with density
Pz, noise € with density p., and output p, with density p,

» We can choose p, and p. independently (based on our belief about the data)

42 /55

Dependent Densities

» Recall: Data generation model has three random variables: Input = with density
Pz, noise € with density p., and output p, with density p,

» We can choose p, and p. independently (based on our belief about the data)

» But y depends on x and € :

42 /55

Dependent Densities

» Recall: Data generation model has three random variables: Input = with density
Pz, noise € with density p., and output p, with density p,

» We can choose p, and p. independently (based on our belief about the data)

» But y dependsonxz ande: y= f(x)+e¢

42 /55

Dependent Densities

» Recall: Data generation model has three random variables: Input = with density
Pz, noise € with density p., and output p, with density p,

» We can choose p, and p. independently (based on our belief about the data)
» But y dependsonxz ande: y= f(x)+e¢

= We need a joint density p, ,

42 /55

Dependent Densities

» Recall: Data generation model has three random variables: Input = with density
Pz, noise € with density p., and output p, with density p,

» We can choose p, and p. independently (based on our belief about the data)
» But y dependsonxz ande: y= f(x)+e¢

= We need a joint density p; (Z,7) = p(Z) - pe (g) - f(:i‘))

42 /55

Example: Joint Density

> x: Fair six-sided die; f(x) =2+ 1; y = f(z) +¢€

43 /55

Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢

> e pe(_l) = 4117176(0) = %7])6(1) = %

43 /55

Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = 4117176(0) = %7])6(1) = %

> px,y(i'ag) = pa:(i') 'pe(:l) - f(i'))

43 /55

Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iap€(0) = %7])6(1) = %
> pz,y(i'v Z)) = pw(j) 'pe(y - f(i'))

Pey 1 2 3 4 5 6 T 8

43 /55

Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iap€(0) = %7])6(1) = %
> pz,y(i'v Z)) = pw(j) 'pe(y - f(i'))

Pey 1 2 3 4 5 6 T 8
1

o=
=

43 /55

Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iap€(0) = %7])6(1) = %

> Poy(2,9) = pa(@) - pe(§ — f(2))

Pey 1 2 3 4 5 6
1

1 1
I 55 15 3¢ 0 0 0

43 /55

Example: Joint Density

» z: Fair six-sided die; f(z) =2+ 1,y = f(z) + ¢
> e pe(_l) = iape(o) = %ape(l) =1

4
> pz,y(i'v :l)) = p$(£') " Pe (Q - f(i.))
Dey 1 2 3 4 5 6
1 1
1 54 12 274 (1) 0 0
0 51 i3 34 0 0

43 /55

S oo oo
o o o o~

o o o327

43 /55

Example: Joint Density

flx)+e

z+1;y
pe(l) =
) 'pe(y - f(i'))

» z: Fair six-sided die; f(z)

> e pe(—1)

—I=<

1
27

pe(0)

1
49

3

Pa(

I
>
3

)

> Pyl

px,y

o —FHE-Re
“FHERe o
g o o
o o o o

— AN M <t 0

o

o

o

Ne]

Marginal & Conditional Density

» Marginal Density: p,(Z) = degy Pa,y(Z,7)

44 /55

Marginal & Conditional Density

> Marginal Density: po (%) = > ;cq, Pey(E: 1)

» Conditional Density: py|x:5€(g}) = Day(Z,9)/p(Z)

44 /55

Marginal & Conditional Density

» Marginal Density: p,(Z) = Eyeﬂy Py (Z,7)

» Conditional Density: pyj,—3(9) = pzy(2,9)/pz(2) (often p(g|2) for short)

44 /55

Marginal & Conditional Density

» Marginal Density: p,(Z) = Eyeﬂy Py (Z,7)
» Conditional Density: pyj,—3(9) = pzy(2,9)/pz(2) (often p(g|2) for short)

» we call and y independent if p, (Z,9) = p2(Z) - py(y) for all Z,7

44 /55

Marginal & Conditional Density

» Marginal Density: p,(Z) = Eyer Py (Z,7)
» Conditional Density: pyj,—3(9) = pzy(2,9)/pz(2) (often p(g|2) for short)

» we call and y independent if p, (Z,9) = p2(Z) - py(y) for all Z,7

Example:

 pe(2) p(lz) p2lz) pGBl2) p@lz) pGl2) p6lz) p(7lz) p(8lT)

44 /55

Marginal & Conditional Density

» Marginal Density: p,(Z) = Eyeﬂy Py (Z,7)
» Conditional Density: pyj,—3(9) = pzy(2,9)/pz(2) (often p(g|2) for short)
» we call and y independent if p, (Z,9) = p2(Z) - py(y) for all Z,7

Example:

44 /55

Marginal & Conditional Density

» Marginal Density: p,(Z) = Eyeﬂy Py (Z,7)
» Conditional Density: pyj,—3(9) = pzy(2,9)/pz(2) (often p(g|2) for short)
)) =

» we call and y independent if p, (Z,9) = p2(Z) - py(y) for all Z,7

Example:
@ po(2) p(l2) plz) pBl2) p@lz) pGl2) p6l2) p(7l2) p(8|2)
1 1 1 1
L3 : 1 : 0 0 0 0 0
2 g 0 o % % 0 0 0 0
3% 0 0 o 3 : 0 0 0
4 g 0 0 0 o % 3 0 0
5% 0 0 0 0 o 3 : 0
6 5 0 0 0 0 0 o 3 3

44 /55

Construction

» Conceptually, we would start by specifying a full joint density and infer all
properties (marginal, conditional, independence) from that

45 /55

Construction

» Conceptually, we would start by specifying a full joint density and infer all
properties (marginal, conditional, independence) from that

> Practically, we start with independence assumptions, marginals, and conditionals
and infer the joint density from that: p, .(Z,9) = pyje—2(9) - P=(T)

45 /55

Probabilistic Regression

» Recall: We assume that input and noise are independent

46 /55

Probabilistic Regression
» Recall: We assume that input and noise are independent

> We assume uniform data generation, i.e. p,(&) = & for some constant C

46 /55

Probabilistic Regression
» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C

> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

46 /55

Probabilistic Regression

» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C
> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

= conditional: py,—;(9) = N (9|f(#),0) where f is the “true” underlying function

46 /55

Probabilistic Regression
» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C
> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

= conditional: py,—;(9) = N (9|f(#),0) where f is the “true” underlying function

8

46 /55

Probabilistic Regression
» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C
> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

= conditional: py,—;(9) = N (9|f(#),0) where f is the “true” underlying function

8
6 [
> 4
2 1. sample Z from p,
0 | A | | |
0 1 2 3 4 5 6

46 /55

Probabilistic Regression
» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C
> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

= conditional: py,—;(9) = N (9|f(#),0) where f is the “true” underlying function

8
6 [
> 4
2. compute f()
2 1. sample Z from p, |
| | | | |
OO 1 2 3 4 5 6

46 /55

Probabilistic Regression
» Recall: We assume that input and noise are independent
> We assume uniform data generation, i.e. p,(&) = & for some constant C
> We assume Gaussian noise, i.e. p.(€) = N (|0, o) for some o > 0

= conditional: py,—;(9) = N (9|f(#),0) where f is the “true” underlying function

8
6| .
3. sample ¢ from p,,—s
> 4 .
2 -
| | | | |
OO 1 2 3 4 5 6

46 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

N
ma X; 1
feJ)-‘(gpz,y(Zayl)

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above

» Find the function f that maximizes the likelihood of the dataset

N
max pr,y@% Yi)
i=1

feF
N
<= min —lo (Zi,)
e g il:[pm,y(i Vi)

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above

» Find the function f that maximizes the likelihood of the dataset

N
max pr,y@% Yi)
i=1

feF
N
<= min —1lo (Zi,)
rer ; g pm,y(i y%)

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max
fer

<— min

N
pr,y(xi: yl)
=1

N

Z —log (py|iB:wi (T, Yi) * Pa (l'z))

=1

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max
fer

<= min

N
H Pzy (xi, yi)
=1

N

> —10g (pyfems; (i, 5i)) — log (pa(@:))

i=1

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max
fer

<— min

N
[e (@i i)
=1

N

Z - lOg (py|z:$i (m’i’ yl)) - log (%)
=1

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

N
max [poy(ei)
i=1

feF
N
= %1}1 ; —log (N (yil f(2i),0))

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above

» Find the function f that maximizes the likelihood of the dataset

N
max pr,y(wi; yz)
=1

feF
N 2
. 1 L (f(xi) —ws)
%1}1 ;—log< 2W‘02-exp[—§ o2])

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

N
max H Pzy (xiv yz)
=1

feF
N 2
. 1 2 1 (f(xz) - yi)
= D glsCnot)t g

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v1),- .-,
» Find the function f that maximizes the likelihood of the dataset

max
fer

<— min

N
pr,y(xia yl)

Z

=1

_yz

(zn,yn)} is generated as above

47 /55

Probabilistic Regression (I1)

» Assume that example data set D = {(x1,v41),...,(zN,yn)} is generated as above
» Find the function f that maximizes the likelihood of the dataset

max pr,y(:vi, Yi)

<— min —
iy Z} vi)’

= Equivalent to RMSE minimization

47 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pyp_p(f)
feF fIp=D

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pyp_p(f)
feF fIp=D

< max psp(f,D)/pp(D)
feF

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

)

<~ max psp(f,D)
feEF

>

max ppp_p(
ferF /Ip=p

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

~

max ppn_p(f)
jer JIP=P

= max pp ;D) ps(f
nax ppyy—(P)-pslf)

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pyp_p(f)
feF fIP=D

<= max (ﬂpwa:f(yi,l’i)) ‘Pf(f)

fer i

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pf|pzﬁ(f)

fer
N
= ?Iélg —log (il_[lpy’x|f:f(yi7xi)> — log (W(f))

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pf|pzﬁ(f)

fer
N
= ?Iélg ; —log (py,ﬂf:f(yhxi)) — log (W(f))

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pf|pzﬁ(f)

fer
N
= min ;—m (Pytoes g () - Palwi)) —log (ps())

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pf‘pzﬁ(f)

fer
N
= ;Iél;:l ; —log (pmx:xi’f:f(yi)) — log (pf(f)>

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pf|p:ﬁ(f)

feF
— 1}112 ﬁ;—log (N(y’f(ﬂﬁl),UQ)) —log (Pf(f))

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

A~

max pf|p;ﬁ(f)

fer
. N (f(xi) - yz')Q ;
— ?22 Zz; 5T 2 log (Pf(f))

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

~

max pfm:ﬁ(f)

feFr
N =T 2 n
) 1 (w" - () — wi)
= Inin ZE 1 3 = —log (jl_ll./\/(wn|0,)\))

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pf|D:ﬁ(f)

fer
N —T 2 n 2
. L(a@" - p(ai) —yi)” | 1~ W
= — -y Z
TR ; 2 o2 ta ; A2

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

~

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pfm:ﬁ(f)

feF
N) 0_2
. T I A
= min ;(w (0(a:) —yi) + 350

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pfm:ﬁ(f)

feF
N) 0_2
. T I A
= min ;(w (0(a:) —yi) + 350

= Equivalent to Regularized RMSE minimization

48 /55

Probabilistic Regression with Bayesian Flavour

» Consider f (or the parameters of f) as a random variable itself

» Define a prior py, e.g. ps(f) = N(wi]0,A) - ... - N(wn|0,\)
» Maximize the posterior probability for the model

max pfm:ﬁ(f)

fer
N) 0_2
. T T
= nin ;1 (@ - p(wi) —yi)” + 2w W

= Equivalent to Regularized RMSE minimization

» Note: “Truly” Bayesian modelling would do an average across all models (Bishop

2006)

48 /55

Lessons from Machine Learning Theory

THE UNIVERSITY OF

SYDNEY

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

50/55

Probably Approximatively Correct (PAC)

> Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

50/55

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set).

50 /55

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set). We call a learning
algorithm A probably approximatively correct with bounds 6,¢ € (0,1) on p;

50 /55

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set). We call a learning
algorithm A probably approximatively correct with bounds 4,¢ € (0,1) on ps 4 if a
1 — 0 fraction of sufficiently large datasets D sampled from p,,

50 /55

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set). We call a learning
algorithm A probably approximatively correct with bounds 4,¢ € (0,1) on ps 4 if a
1 — 6 fraction of sufficiently large datasets D sampled from p, , yield a model
fp=A(D)

50 /55

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set). We call a learning
algorithm A probably approximatively correct with bounds 4,¢ € (0,1) on ps 4 if a
1 — 6 fraction of sufficiently large datasets D sampled from p, , yield a model

fp = A(D) such that

N N 2 SR R
(fo(@) =)" - pry (@, §)didj <
xJYy

50 /55

Probably Approximatively Correct (PAC)

» Question: Under a probabilistic view, what does generalization mean?

> Intuitively: An algorithm generalizes if, given sufficient data, it probably finds a
model that has low error on the 'true’ data distribution.

Definition: PAC (adapted from Shalev-Shwartz and Ben-David 2014)

Let p,, be a density over an input set X and an output set). We call a learning
algorithm A probably approximatively correct with bounds 4,¢ € (0,1) on ps 4 if a
1 — 6 fraction of sufficiently large datasets D sampled from p, , yield a model

fp = A(D) such that

/X/y (f2(@) - 1’3)2 Pay(Z,9)didy < €

Proving PAC properties is one of the key objectives in Statistical Machine Learning
Theory (Shalev-Shwartz and Ben-David 2014).

50 /55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?

51/55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?

> Let fp:=A(D) and let f(z) := [fp(x) - pp(D)dD

51/55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?
> Let fp:=A(D) and let f(z) := [fp(x) - pp(D)dD

» Consider for some (z,y) the average error a learned model will make.

51/55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?

> Let fp:=A(D) and let f(z) := [fp(x) - pp(D)dD

» Consider for some (z,y) the average error a learned model will make.

51/55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?
> Let fp:=A(D) and let f(z) := [fp(x) - pp(D)dD

» Consider for some (z,y) the average error a learned model will make.

/ (fp(x) —y)? - pp(D)dD = / (fp(x) = F(x) + f(z) —y)* - pp(D)dD

51/55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?
> Let fp:=A(D) and let f(z) := [fp(x) - pp(D)dD

» Consider for some (z,y) the average error a learned model will make.

/ (fp(x) —y)? - pp(D)dD = / (fp(x) = F(x) + f(z) —y)* - pp(D)dD
- / (Fp) — F(@))? poD)iD+ (f(z) - v)°

—_——

Bias / “Undercuriosity”

Variance / “Overcuriosity”

51/55

Bias-Variance decomposition

> Question: Why does regularization help for generalization?
> Let fp:=A(D) and let f(z) := [fp(x) - pp(D)dD

» Consider for some (z,y) the average error a learned model will make.

/ (fp(x) —y)? - pp(D)dD = / (fp(x) = F(x) + f(z) —y)* - pp(D)dD
- / (Fp) — F(@))? poD)iD+ (f(z) - v)°

—_——

Bias / “Undercuriosity”

Variance / “Overcuriosity”

Regularization can strongly reduce variance while slightly increasing bias = better
generalization

51/55

Crossvalidation and Experimental Design

THE UNIVERSITY OF

SYDNEY

Crossvalidation

» PAC is based on the 'true’ data distribution

53 /55

Crossvalidation

» PAC is based on the 'true’ data distribution ... which we don’t know

53 /55

Crossvalidation

» PAC is based on the 'true’ data distribution ... which we don’t know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

53/55

Crossvalidation

» PAC is based on the 'true’ data distribution ... which we don’t know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/ (/X /y (f5(#) = 9)* - pry (5, 9)died) - p(D)dD

53/55

Crossvalidation

» PAC is based on the 'true’ data distribution ... which we don’t know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/ / / fp(@) =4 'Px,y(f,@)d:%dz))-pp(ﬁ)d@

N 2
QMZ@ Z (fDJC(fU)*y)

7=1

53 /55

Crossvalidation

» PAC is based on the 'true’ data distribution ... which we don’t know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/ / / (f5(#) =9 'Px,y(i,@)dﬁ:dz))-pp(ﬁ)d@
Zm, > ijc(i’)*@)Q

(2,9)€D;

53/55

Crossvalidation
» PAC is based on the 'true’ data distribution ... which we don't know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/(/X/y (fp(@) —) 'pm,y(A,g)di'd?)) -pp(D)dD

53 /55

Crossvalidation
» PAC is based on the 'true’ data distribution ... which we don't know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/(/X/y (fp(@) —) 'pm,y(A,g)di'd?)) -pp(D)dD

test train

53 /55

Crossvalidation
» PAC is based on the 'true’ data distribution ... which we don't know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/(/X/y (fp(@) —) 'pm,y(A,g)di'd?)) -pp(D)dD

train test train

53 /55

Crossvalidation
» PAC is based on the 'true’ data distribution ... which we don't know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/(/X/y (fp(@) —) 'pm,y(A,g)di'd?)) -pp(D)dD

train test train

53 /55

Crossvalidation
» PAC is based on the 'true’ data distribution ... which we don't know

> But we can approximate the distribution over all possible data sets by constructing
disjoint subsets Dy, ..., Dy of our data set D

/(/X/y (fp(@) —) 'pm,y(A,g)di'd?)) -pp(D)dD

train test

53 /55

How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

54 /55

How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

> Get the best possible reference implementation for each baseline Ay, ..., Ax

54 /55

How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

> Get the best possible reference implementation for each baseline Ay, ..., Ax

» Collect multiple (!) data sets that represent your target domain well

54 /55

How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

> Get the best possible reference implementation for each baseline Ay, ..., Ax
» Collect multiple (!) data sets that represent your target domain well

> Approximate the generalization error for each algorithm on each data set using
crossvalidation

54 /55

How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

> Get the best possible reference implementation for each baseline Ay, ..., Ax
» Collect multiple (!) data sets that represent your target domain well

> Approximate the generalization error for each algorithm on each data set using
crossvalidation

> Use K paired statistical tests to compare the errors of A with each A4,..., Ax
(e.g. Wilcoxon sign-rank test); use Bonferroni correction

54 /55

How to design a ML experiment

Setting: We have a cool new learning algorithm A and want to compare it against
baseline learning algorithms Ay, ..., Ax

> Get the best possible reference implementation for each baseline Ay, ..., Ax
» Collect multiple (!) data sets that represent your target domain well

> Approximate the generalization error for each algorithm on each data set using
crossvalidation

> Use K paired statistical tests to compare the errors of A with each A4,..., Ax
(e.g. Wilcoxon sign-rank test); use Bonferroni correction

> |f too few datasets: Use the errors in each crossvalidation fold

54 /55

009v3 [cs.LG] 16 Jul 2018

5

arXiv:1806.0.

Example: Reading a typical machine learning paper

‘Tree Edit Distance Learning via Adaptive Symbol Embeddings

Benjamin Paafien

Abstract

Metric learning has the aim to improse classifi-

Structures, abstract syntax irees of computer pro-
rams, or syntax trees of nawral kingusge, by
learning the cost function of an edit distance,
ie. the costs of replacing, deleting, or insert-
ing nodes in a tree. However, kaming such
s diely may yiedan edit disce which
violates metric axioms nter.
pret. and may not gev\tmllu ph iy
ribution, we propose a novel metric earming ap-
proach for trees which we call embedding edit
distance leaming (BEDL) and wl\lcl\ e 0
it ditame indicly by e
e B s
oo supports class discrimina-
tion. We leam such embeddings by reducing the

show bt BEDL mproves upon he st of e
antin metric learning for tre hmark
s sen, anging from compaer scenee aver
biomedical da 103 natural-language processing

ticularly apparent in case of the k-nearest neighbor clas-
sifier which classifies data points by assigning the label
o the mary of s & st eghbors acsonding o3
given distance (Cover & Hart, 1967): or in case of learning
Vecior quantation apecshs whichclasity dka s
by assigning the label of the closest prototype according
t0a given distance (Kohonen. 1995). The success of such
mchine eming spposces ines o e diane being
discriminative. hat i, data point from the same class be-
ing generallycloser comparedro das poins o diftret

. 1f the distance does not flfill this critrion, one
has to adapt or learn he distance measure with respect to
the data, which isthe topic of merric learning (Kulis, 2013;
Bellet et al., 2014).

Most prior research n metriclearning has focused on learn-
ing a generalization of the Euclidean distance according
to some cost function (Kulis, 2013; Bellett al., 2014)
Hovecr,the Encldan it st syl 0 00
vectoral data. such as protein sequences, abstract syntax
e of compute rograms. or o et of nawrl
language. To process these kinds of data, edit distances
are a popular option. in particular the tree edit distance
(Zhang & Shasha. 1989). In this contribution. e develop
a novel metric learning scheme for the tree edit distance
which we call embedding edit distance learning (BEDL).
While pist research on metric leaming for tres does exist
(Belletet al, 2014), BEDL goes beyond the stae-of-the-art
in muliiple aspects:

dataset. 2

1. Introduction

Many classification approaches in machine leaming explic-

itly or implicity rely asure of distance (Kuli,

2013; Bellet et al, 2014; Mokbel etal., 2015). This is par-

don Technalogy, Bielefeld Universi
mputr Seienc, Univerity of Pis.
reaponince . Benomin Posin st bk

Com:
biclefekd.de>,

Proceedings of he 35" Inernational Confernce on Machine
Learning, Stockbolm. Sweden, PMLR 80 2018, Copysight 2018
by the (s,

. Bellet etal. (2012), we provides

generalized re-formulation of the edit distance which
lends itself 1o ing, and can be applied to
ary Vindof i dsapco whick wes eplocement delo
tion, and insertion operations. Furthermore, we con-
sider not only one optimal edit seript for metric learn-
ing, but all o-optimal edit scripts via novel forward-
backward algorithm,

Our approach requires only a linear number of data
twples for metric learning. a5 we represent classes by
few prototypes. which sxe selected via median learn-
ing vector quantization (Nebel et ., 2015).

 Most importanty, we do not direatly leam the op-
eration costs fo the siing edit distance, but instead

Example: Reading a typical machine

We did a cool new algorithm;

it can do x

arXiv:1806.05009v3 [cs.LG] 16 Jul 2018

learning paper

‘Tree Edit Distance Learning via Adaptive Symbol Embeddings

Benjamin Paafien

bstract

Metric learning has the aim (0 improve classifi-
cation accuracy by learning a distance measure
which brings data points from the same class
closer together and pushes data points from dif-
flerent classes further apan. Recent research has
demonstrated that metric learning approaches
can also be spplied to trees, such as molecular
Structures, abstract syntax trees of computer pro-

iie. the costs of replacing, deleting, or insert-
nodes in a tree. However, kaming such

coss dimaly may ie n e disace which
violates metric axioms, is challenging o inter-

i e e
proach for trees which we

ticularly spperent in case of the k-nearest neighbor clas.
sifier which classifies data points by assigning the label
o the mary of s & st eghbors acsonding o3
given distance (Cover & Hart, 1967): orin case of eaming
o quancation sprosches which sty s it
by assigning the label of the closest prototype according
t0a given distance (Kohonen. 1995). The success of such
machine leaming approaches hinges on the distance being
dierininau, s, Gt o fom e e s be
ing gl cln comparcdio data oss o st
1 i dionce doesnoxfll hs crseron, one
T toadap o learm 1o dance messre with espect to
the data. which is the topic of merric learning (Kulis, 2013;
Bellet et al., 2014).
Most prior research n metriclearning has focused on learn-
ing a generalization of the Euclidean distance according
to some cost function (Kulis, 2013; Bellet et al., 2014)

distnce ummg{HEDL) and which learns an

distanceto prototypical trees from the same class
and increasing the distance 1o prototypical wrees
from different classes. In our experimens.
showthat BEDL

However, the is not applicable to non-
skl data s 25 ot soquacen, alwcac sy
Iees of computer rogeams, or sytax ees of namra
language. To process these kinds of data, edit distances
are a popular option, in paricular the tree edit distance
(Zhang & Shasha. 1989). In this contribution, we develop
 novel meric learning scheme for the tree edit distance
which ve tallemh:ddmg edit distance learning (BEDL).

for s does exist

antin metri learning for trees on six benchmark
data sets, ranging from computer science over
biomedical data to s natural-language processing

While st
(Bellctost 3075, BEDL goc eyondhe s of
in muliiple aspects:

1. Introduction

Many classification approaches in machine leaming explic-

itly or implici asure of distance (Kuli,
2013; Bellet et al, 2014; Mokbel etal., 2015). This is par-

Cognine nercion ey, Beleeld Usivniy, G-
o e of Computer S Unvesty o P .

. Bellet etal. (2012), we providea
el e fomultionof e it e whih

Lends itself 1o metric leaming, and can be applied to
my Kindof it dsance i s etacement, el
tion, and insertion operations. Furthermore, we con-

sider not only one optimal edit seript for metric learn-
ing, but all o-optimal edit scripts via novel forward-
backward agorithm,

+ Ourapprosch s ony et mmber of i
twples for met

ponkence 1 Berjumin Faten
ot

rocaings o the 55" nertonal Conterace o Mchine
faming ik, Sweden, PILR 8 2018, Copyigh 2018
by the authrs

few prototypes. i s ot medn
ing vector quaniization (Nebel et al, 2015).

 Most importanty, we do not direatly leam the op-
eration costs fo the siing edit distance, but instead

55 /55

Example: Reading a typical machine learning paper

arXiv:1806.05009v3 [cs.LG] 16 Jul 2018

‘Tree Edit Distance Learning via Adaptive Symbol Embeddings

Benjamin Paafien

Abstract
Metric learning has

the sim to improve classifi

costs direaly may yield

violates metric axioms. is cl
pret. and may not generalize well
ribution, we propose a novel metric earming ap-
proach for trees which we

ticularly spperent in case of the k-nearest neighbor clas.
sifier which classifies data points by assigning the label
o the mary of s & st eghbors acsonding o3
given distance (Cover & Hart, 1967): orin case of eaming
o quancation sprosches which sty s it
by assigning the label of the closest prototype according
t0a given distance (Kohonen. 1995). The success of such
machine leaming approaches hinges on the distance being
dierininau, s, Gt o fom e e s be

ing gncalyclovrcompated ot it o e

1 i dionce doesnoxfll hs crseron, one
s adapt ox learn the distance measure with tespect to
the data. which is the topic of merric learning (Kulis, 2013;
Bellet et al., 2014).

Most prior esearch in metriclearning has focused on learn-
ing a generalization of the Euclidean distance according
to some cost function (Kulis, 2013; Bellet tal, 2014

distance leaming (BEDL) and whlch e 0
it ditame indicly by e

uch tht he Euclniexn mmnc:
o e v supports class
ton. We k

However, the i
vectoral data. such as protein sequences, abstract sy
e e e ey
o D ST i
e

g
distanceto prototypical tees from the same class

EDL improves upon e e of e
S in et loing fo s on s

data sets, ranging from computer science over
biomedical da 103 natural-language processing

T
== Iummg scheme for the tree edit distance
‘which we call embedding edit distance lesrning (BEDL).
‘While past research on metric leaming for rces does exist
(Beletet al, 2014), BEDL goes beyond thestate-of-the-art
in muliiple aspe

dataset. . (2012), we providea
B
lends el o metic laming.uxd canbe pplid to
1. Introduction o Kindof it i s st el

Many classification approaches in machine leaming explic-

itly or implici asure of distance (Kuli,
2013; Bellet et al, 2014; Mokbel etal., 2015). This is par-

Cognine nercion ey, BeleeldUsivniy, Gt
o e of Computer S Unvesty o P .

o, and o parao: Fitarmom; wo s
sider not only one optimal edit sipt for metric learn-
ing, but all o-optimal edit scripts via novel forward-
backward algorithm.

* Ourapprosch s ony et mmber of i
twples for met

ponkence 1 Berjumin Faten
ot

rocaings o the 55" nertonal Conterace o Mchine
faming ik, Sweden, PILR 8 2018, Copyigh 2018
by the authrs

few prototypes. i e
ing vector quaniization (Nebel et al., 2015).

Most importanily, we do not directly lesm the op-
eration costs for the siing edit distance, but instead

This is what we can do
better than before

55 /55

Example: Reading a typical machine learning paper

We checked that this hasn't
been done before, really!

19018

1 1A T

1R0A NSNNOR Tre T 0

arYiv

Tree Edit

leam a vectorial embedding of the label alphsbe for
curdats s, which ikl el opertion
T reformulion cnures that the resling
i e conforms to ol mevic some. Futes
we can interpret the resulting embedding vectors via|
visualization, their painwise distances and norms.

e b by discusing et ik
BEDL I e dea. snd iy we evie BEDL. ex.
perimentally ind discuss the resuls

2. Related Work

Our work is reluted to muliple areas of machine learning,
‘most notably distances on structured dats, metric leaning.
and vector embeddings.

In the past decades, muliple distance measures for struc
ured dua - ic.

been suggested.
tance based on exist raph ke
D Son Vi & Speit 3010, s s Nesiher
Lehman Graph Kemels (Shervashidze et al., 2011), topo-
logical distance-based tree kemels (Aol t al. 2015).
or deep graph kemels (Yarardag & Vishwanathan, 2015).
Stuch Kernels achieve state-of-the-art results on structured
dita and can be adipted to wraining data via muliple
Kernel learning (Alolli & Donini, 2015), or kemels based

however, only bring trees from the same class closer
together (Bellet etal., 2014). For example, Boyer et l.
(2007 have proposed to replxce the tree edit distance by
the negative log probubiliy of all tree dit scripts which
transform the Lef inpu tree into the right input tree 7.
Accordingly. the costs of edit operstions cliange o prob-
abilties of replacing. deleting. or inserting certain la-
bel. These adit probabilitis are adepted to maximize the
probability that trees from the same class are edied into
eachother (Boyer et al. 2007). To replace generative mod-
els by discriminative ones, Bellet et l. (2012; 2016), have
proposed o learn an edit distance . such that the corre-
sponding similarity 2 - expl~d(x,)] ‘good” as de-
fined by the goodness-framework of (Balcan et al, 2008).
‘Goodness according 1o this framework means that a lin-

the space of similarites (Balcan et ., 2005; Bellet et al.
2012). " Belletetal. (2012) have experimentally shown
that this approach outperforms generative edit distance
metic learning and have also established generalization
suarantees based on the goodness framework. Therefo
this go0d edit similariy learing (GESL) approsch of
Bellet et al. (2012) is our main reference method.

Our novel approsch is swongly inspired by GESL. How-
ever,our approach goes beyond GESL in key aspects. Fist,
we uilize a differentcost function, namely the generalized
learning vecior quantization (GLVQ) cost function, which

2018). Ker-
nels, however. have drawbacks i terms of interpretability.
as ahigher disance value does not necessarily relate toany
Kindof it e brwee e npu e, Pt

re by definition limited o be positve semi-
e ity v oo hon o et
sets (Schleif & Tino, 2015).

If one sives for an interpretable measure of distance.
edi distances are a popular choice, for example for
he comparison of protein sequences in bioinformatics
(Smith & Waterman, 1981), or absiract syntax trees for in
telligent wioring systems (Pasen et al, 2018). Here, we

closer is 1 the clos-
m prciypial cample fom the same class compared

sest prototypical example from another class
e Yomade 1905 s o GESL VG st e
theoretically well-justified because it yields a maximum-

a principled way to select prototypical examples for metric:
learning, and isflexible enough to notonly lear acost ma-
trix, but aso vectorial embedding of the tre labels, such
that the. o provides

focuson

I

orderad e Finto xmlhtmldert;\l!z o @i & S
1989). Such ordered tres are the most gen sue

e o e ested ey ol s
a5 cdit distances on unordered rees and general graphs are

tance o o 5 8 spcisl cne, uch i ca b
oo eprsentaive for it deances a5 such

Metric keaming for the tree dit distance corresponds 1o
adspting the costs of edit operations in order o being trees
from the same class closer and push trees from different

While embedding approaches e common in the lit

entue, prier work bas focused mosly oo embed:
ding wes as a whole foe example via graph herel
ipproaches (ilital. 2015 2018;

et

ppeosces Gicinetal. 15) In this comion,
sh 10 obiain an embedding for the single elements

of e nd i i e e, Asof e, och
inthe form of

Imost

55 /55

Example: Reading a typical machine

We are very good and math
and our method is justified

19018

1 1A T

1R0A NSNNOR Tre T 0

arYiv

Tree Bt

learning paper

recurrent neural network for natural language processing
taks Choet l, 2014 Suveral, 2014, I aidsion
fortres, our appecach aso provides.
+ comeponding e sdit disrcer vih i opimized
for clssification, and offers an inuitive view on the da
Supporing apphcations k. mcligent wioring sysiems
(Paskiencet al. 2018).

H

3. Background

In thissection, we reviitthe busic problem of ree dit dis-
tance learning by first introducing the ree edit distance of
Zhang & Shasha (1989, as well as the metic leaning for-
malization suggested by Belletet al. (2012).

3.1, Tree Edit Distance

Wedncauwerorerame e Vaws(r,) where

for any x € X, and such that the riangular incquality is
fulfilkd.

L Let ¢ be a psewdo-metric on X U {~). Then,
the cormesponding tree edit distance i (.) can be com:
puted in O - [§%) using a dynamic programming
scheme.

Coment il e st eguts e b
amic prog ramming scheme overestimates the ree edi dis.

Proof. Referto Zhang & Shasha (1959) for a proof of the
firstclaim, and refer 0 the supplementary material (Pafen
2018 for a proofof the second caim. o

Beyot casbing us 0 o the e it e o
ently,

reXands,
oner - We dennethe st af sl posabe s oer X ¢
0. Fanter we il + e o e . Ve dene
the size of a ree 2(2y,._,) as [E] 1= 1+ L0 15|
Finally. we call a istof lmesq T aforest. Note that
every tre i also a fores

Next. we inwroduce edits over trees. In general, a ree
edit 3 s a function which transforms forest into a for.
est (Paalienetal, 2018). In this paricular case, we are
only concemed with three kinds of edits, namely dek-
tlow, wiich o 8 e ol from » forst; e
inserta certain labelinto forest: snd replace.

ot whidh remove 3 e bl o orest o
another label inits place. For example, deleting from a

(7.2) resuls in the forest y, 2. Inserting x into this
forest s parent of y resuls in the forest x(y). 2. Finally,
replacing with c inths fores resuks n the forest (),

We s ach it i acot i fction ¢ (XU
{-))? -+ R. In paricular, we define the cost ofa deletion
of abel 7 2 .). the cosof n inserion of el
as c(—), and the cost of a replacement of label = with
Label y s ¢(r,). We defne the costof a sequence of edits
8167 3 the sum over the costs of all edits.

Finally, we define the tree edit distance d, (7,) between

any o trees 7 and § according 10 ¢ as the cost of

tance d (x(y. 2).i(2(q) between the rees x(y. z) and

a(z(c) s 3 because the cheapest sequence of edit i to

replace x with g, deete y, and inser 5.

Zhng e S 199 st e e e e

canbecompua ity wing 2 dyamic rogrming
algorithm if s a pseudo-metri, meaning thal

eeaine nd ymmerc unctin, i ht (o,)

Teling nee el disance d s 3 ewdo-merne et
Theorem 2. Let c be a psewlo-metric on XU {). Then,
the corresponding tee edit distance d is a psetalo-metric
on the set of possible rees over X.

However if violates any of the pseudo-metric properties
(except for the riangular inequalit), we can consirct ex-
amples such that d violates the same pseudo-metric prop-
erties.

Prf Refs 0 e gty el (e,
20180,

Bl s e ke it ot ncion
© desirable. Howeve ing preudo-metric propert
onfmyhecmllengznzm et leaning. vhih posive]
our key mrivations for vectorial embeddings

32.Tree Edit Distance Learning

e it e lering exsentaly mews o aiap e

such tha the resulting tree editdisance i
e et s o ok ot Following Belletet a.
(2012: 2014), we frame tree edit distance learning as min-
imizing some loss function over a et of pasitive pars of
rees P C T(X)? and negaive paes of wees N C T ()"
that s, rees which should be close and for away respec.
tively. In paricular, given a loss function £ we wish o
Salve the optimization probleny:

min E(d, P, N) m

In our contribution. we build upon the good edit similar.
ity learning (GESL) approach of Belletetal. (2012), who

55 /55

Example: Reading a typical machine learning paper

If you want to repeat our
experiments, you need
to do all this stuff

14 Tnl 2N1Q

S|

1

o
7
S
]

ofthe pcdit disance . (7. 7) with espect o ()

Vato)dea(5.0) = ©

m o R
Lins [; i ummnu,m]

il et
A;m.m [Z P,

vhee i e Konecker Dol i () = 1 =y
and 0 otherw

() — ()]
7) = awl

Finaly we can plug this result into Equation 5, which
yiekds a gradient Vi . such that we can leam the vec-
{oril embedding of A via gradient technies

e oty e B L 019 To ment

such a degeneration, we follow the regularization recom-

‘mendation of Schncider tal. (2010) and add the term

3 log(det(AT - A)) to the GLVQ loss 4, which udds

the gradient -2 A1” where Al is the Moore-Penrose-
" o

Yl might g e clasifaion sk i uestion
perica e vl n e follovig dota s, nclu
g v o oo s s

Strings: A two-class data et of 200 strings of length 12,
adapted from Mokbel et . (2015). Swings in class 1 con-
Jowed

that they consistof 5 a or b symbals, followed by a c or
4. followed by another 6 a or b symhols. Note that the
clasescanbeneilerdscrimiied vialngth or i -
bol frequency features, The decisive discriminative festure
o where ot s locaed i the suing

MiniPalindrome and Sorting: Too data sets of Jaa pro-
‘grams, where classes represen different strategics o solve.
3 programming sk, The MiniPalindrome datsset contans
48 prgrans inlemeningon of gt iteges et
whether an input sring contains only palindromes (Paabien,
20163, and the Sorting data set contains 64 programs im-
plementing cither a BubbleSort or an InsertionSort sraiegy
(Pasen, 2016b). The programs are represented by their
bitract synt ‘one of

ditonally

functi

al.
2012) and add the Froberius-norm - A1 to the los,
which adds the gradient 32 A.
As intialization of the vectorial embedding we use a U~
demenional simplex wkh i et 1, il o
Cofe.) = 0if 2 = y and 1 otherwise (refer to the sup-
Plmentary macra fora more detalod ook i Ui b
talizaton (Paatien. 20150))

Reganding computations] complesity, we can anslyze the
radient computaton. To compute gradient. we first need

2 e
declaration, method call, tc).
Cystic and Leukemia: Two data sets from KEGG/Glycan
dan base (Hushimowetal, 2006) adapied from
Gallicchio & Micheli (2013), where one class corresponds
to benign molecules and the other chss comesponds to

of 29:and oneof 57 for Cystic and Leukemia respectively),
and the roots are chosen according to biological mecning
) 160,

prototype for

Hashi 1..2006)

K). Then. we
need to compute the gradient or each data point via Equa-
tion 6, which is possible in O(m - 12 - V) where n is the
Largesttre size in the data set. Computing the regulariza-

cantypically be regarded s consian. In our experiments,
we limit the number of gradient computations 0 200.

5. Experiments

In our experiment. we investigate whether our proposed
metric leaming scheme. embedding edit distance leam-
ing (BEDL), s able 10 improve classification accuracy be-
yond the default initialization, whether BEDL improves
upon the accuracy obtained by good edit similarity keaming
(Bellet et L., 2012), and whether the resulting embedding

Sentiment: A large-scale two-class data set of 9613 sen-
tences from movie reviews. where one class (4650 trees)
comresponds 10 negative and the other class (4963 trees) to

syntax trees, where inner nodes sre unlsbeled and leaves.
are labeled with one of over 30,000 words (Socher et al.
2013). Note that GESL is not practically applicable for
data set. as the number of parameters 1o learn scales
quadraically with the number of vords. i, > 30,00°%
To make BEDL applicable in whis case, we iniialize the
vectorial cmbedding with the 300-dimensional Common
Crawl GloVe embedding (Pennington et al, 2014), which
s reduc via PCA, misiniag 05 o the ot \ariace
(V= 16.4 = 2.3 dimensions on average = standard devi
ation). We adapt this inial embedding va lnear -
formation 2 & RV < which we lear vie BEDL. Fur-

55 /55

Example: Reading a typical machine learning paper

1901Q

11A T

1

1QNA NINNOL2

%

Tree Bt

ther, we replae the cost fungtion with the cosine distance
ea(i.g) = k- L-(@-H 2P/ 7| .
e GloVe

1. The meantesclassificaton emor and untimes or metsc
Tearning. averaged over the cross vlidaton rals, s wellus the

Vordembeding (Peamingion et . 014 e o the -
plementary mterialfor the gradient; PasBen (2018b).

On each data st we perform a crossvalidation! and com-
pise the average test error acoss folds. In particulzr, we
compare the erro when using the inital tree edit distan
with the error when using the pseudaredit dstance leamed
Sigeod oty ewring (GESL), ad s e ol
distince leamned v oposed spproach (BEDL)

In general, we would expect that a discriminative metric
I forone clasir s ol clasiiction s
ing other clasifiers. Therefore, we report the classifica-
ot o o s, ‘namely the median general-

nearest neighbor (KNN) clasifier, and the support vector
machine (SVM) based on the radial basis function kernel.
In order o ensure kemel matrix for SVM, we set negative.
eigemvalues to zer (clip Eigenvalue correction). Note that
this eigenvalue correction requires cubic runtime in terms
ofthe number of data points and is thus prohibitively slow
forlrge daa st e, T, for e Seimen o
 trained the classifiers on a randomly selected sam-

e o 30 ot rom e g dta

We_optimized all hyper-parameters in a nestad 5-fold
crossvalidaton, namely the number of protoypes K for
MGLVQ and LVQ metric leaming i the range 1, 13 the
numberf neighbors for KN in the range |1 15]. the ker-
nel bandwidih for SVM in the range [0.1.10), the spar-
sity parameter) for the goodness chssifier in the range
105,10} and s eulzaionsuength o GESL nd
BEDL in the ran - [10°°.10°%]. We chase
et of rtigpesfor BEDL s vel a the et of
ncighhors for GESL as the optimal number of prototypes
K for MGLVQ.

implementaions, we used custom implemen-
ttions_of KNN. MGLVQ. the goodness classi-
fier. GESL. and BEDL. which are avalabe al

For §
mentation (Chang & Lin, 2011). ~ All experiments were

“We wed 20 fokds or Sengs and Setiment, 10 for Cysic
and Leukemia, 8 fo Soning and 6 for MiniPlndome. For the

hey-axis the differen

s umd orvahaion, Tl s

sub-divided for cach dats set, The lowestclasification eror for
i et g bld pi
T moinar okeor
L aaioor
Uhirsr cofoos
iz ooiaor
Navo i I deiaor
s i wlii dokaer
Amme_“o¥o oiniools ams et
[e e
dient
Moo it e % i

R
fhen 213 855 presgerid

~ iz 82

fety e I

e FiS% joosiwx E3iimc
Sl MRS 2aAUSN oSie
b wazasx - FYTTr
Nowe oiist - st
s AR 533450
fodes T2 19% ey
P o e

‘performed on a consumer-grade lsptop with an Intel Core
17-7700HQ CPU.

“The resuls of ourexperiments ae displayod in Table 5. In
all data sts and for al clasifers, BEDL yilds lower cls-
sifcaton emor compised to GESL. For the Stings data
set we can also verfy this result staistcally with 3 one-
sided Wilcoxon signed ik es (p < 10-4). Funlbermore.
in al but the Leukemia data set, BEDL yieds he overall
st clssfiction resuls. and i close 0 optimal fo the

el ok il cotoed 3 el e o
i Fs e Cysic and Lk Tlds were

Leukemia data set ol e, BEDL
could improve the accuracy for KN, in five out o

Conssent with the puper of G003

e doa .

oeral dta et was maintined

it stayed equal), and in three out of six cases for the good-
ness classifer. For the Strings and Sentiment data ets we.

55 /55

Example: Reading a typical machine learning paper

We tested on lots of data

1901Q

11A T

1

1QNA NINNOL2

%

Tree Bt

ther, we replae the cost fungtion with the cosine distance
en(F.) = £— Lo (@5 -2 p/0- 7| o,
e GloVe

The mean tes clasiication emor and rutimes for metic
Tearning. averaged over the cross vlidaton rals, s wellus the

Vordembeding (Peamingion et . 014 e o the -
plementary mterialfor the gradient; PasBen (2018b).

On cach dta set, we perform 4 crossvalidaton’ and com-
pire the average test artor across fokls. In paricule, we
compare the error when using the initil uce edit distn
il rr whenusing b pe ol dsce med
gkt sty o GESL),
distnce leamod v

)
In general, we would discriminative metric
e for gpeer o s casifction s
o rport th cuscn

hey-axis the different classifers wsed orevalution. The tale is
b o cch s, Th o clasifcuon e o
ach data st is highlighid via oldpr

e Gozaot
i Sotan:
Soiias SoEaos
jees sokon:
i Sosonr
aiask ooor
e i

dient

.0} and e epucitin gt
BEDL in the ran o 10°5 101 We choe the
merof roogpesfr BEDL m el 2 h ramperol
neighbors for GESL s the optimal number of prototypes
K for MGLVQ

implementaions, we used custom implemen-
ttions_of KNN. MGLVQ. the goodness classi-
fier. GESL. and BEDL. which are avalabe al

For §
mentation (Chang & Lin, 2011). ~ All experiments were

“We wed 20 fokds or Sengs and Setiment, 10 for Cysic
and Leukemia, 8 fo Soning and 6 for MiniPlndome. For the

Sareer aeiionn
mitem WL

Tiaen
FiS% joosiwx E3iimc
Frrer) - FYTTr
3% 30% 53343.0%
fodes T2 19% ey
P o e

‘performed on a consumer-grade lsptop with an Intel Core
17-7700HQ CPU.

“The resuls of ourexperiments ae displayod in Table 5. In
all data sts and for al clasifers, BEDL yilds lower cls-
sifcaton emor compised to GESL. For the Stings data
set we can also verfy this result staistcally with 3 one-
sided Wilcoxon signed nk es (9 < 10~ Funby

in al but the Leukemia data set, BEDL yieds he overall
best classification resuls, and s close 10 optimal for the

el ok il cotoed 3 el e o
i For the Cyic and Leukens n ol were

Leukemia data set (027 In all cases, BEDL
could improve the accuracy for KNN, in five out of six
ystic duta se). in

Comiint i the paer of G003

oeral dta et was maintined

it stayed equal), and in three out of six cases for the good-
ness classifer. For the Strings and Sentiment data ets we.

55 /55

Example: Reading a typical machine learning paper

We tested on lots of data

1901Q

11A T

1

1QNA NINNOL2

%

Tree Bt

ther, we replace the cost function with e distance

enlEi) =t - (@
mn.m.mmmmpyéxﬁdu
et S0 1 A MO
e s Paben i

On cach dta set, we perform 4 crossvalidaton’ and com-
pire the average test artor across fokls. In paricule, we
compare the error when using the initil uce edit distn
il rr whenusing b pe ol dsce med
gkt sty o GESL),
distnce leamod v

)
In general, we would discriminative metric
e for gpeer o s casifction s
o rport th cuscn

SmEthod o kay

ey e et s wedorcvton T e
e e e Tl o
bt et g via gt

FoTwax mosiom suzaor
Lo oorons
Toana Wi weiver

jees sotoor
i Sosonr
aiask oEoo
e i

dient

.0} and e epucitin gt
BEDL in the ran o 10°5 101 We choe the
merof roogpesfr BEDL m el 2 h ramperol
neighbors for GESL s the optimal number of prototypes
K for MGLVQ

implementaions, we used custom implemen-
ttions_of KNN. MGLVQ. the goodness classi-
fier. GESL. and BEDL. which are avalabe al

For §
mentation (Chang & Lin, 2011). ~ All experiments were

“We wed 20 fokds or Sengs and Setiment, 10 for Cysic
and Leukemia, 8 fo Soning and 6 for MiniPlndome. For the

Sareer aeiionn
mitem WL

Tiaen

FiS% joosiwx E3iimc

Frrer) - FYTTr

3% 30% 53343.0%
fodes T2 19% ey
P o e

performed on a consumer-grade lpiop with an Intel Core
{77700 HQ CPU.

“The resuls of ourexperiments ae displayod in Table 5. In
all data sts and for al clasifers, BEDL yilds lower cls-
sifcaton emor compised to GESL. For the Stings data
set we can also verfy this result staistcally with 3 one-
sided Wilcoxon signed nk es (9 < 10~ Funby

in al but the Leukemia data set, BEDL yieds he overall
best classification resuls, and s close 10 optimal for the
Leukenia data set (027 In all cases, BEDL

el ok il cotoed 3 el e o
i For the Cyic and Leukens n ol were

could improve the accuracy for KNN, in five out of six
ystic duta se). in

Comiint i the paer of G003

oeral dta et was maintined

it stayed equal), and in three out of six cases for the good-
ness classifer. For the Strings and Sentiment data ets we.

55 /55

Example: Reading a typical machine learning paper

We tested on lots of data

14 Tul 2N1Q

T

QNA NENNOL2

Tree Bt

ther, we replace the cost fungtion with e distance

SRR, oIy s

word embedding (Penningion et . 201 (Feferto e sup-
plementary mateial for the radient Pasen (20185)

On cach dta set, we perform 4 crossvalidaton’ and com-
pire the average test artor across fokls. In paricule, we

ey e il chstersued o evuton, T e
Subdivided for . n&“ ovestclasificalon eror for
e hchl:eunmﬂﬁ“ed\uh .

with the eror when using the pseudoscdit dsance leamed =
via g it similiy lernin (GESL), e B0t oo
e lamed vi s prop e soront
In general, we would 1 a discriminative merric - R
for The also faciltates chassificaton us. e — T B
ifiers. Thercfore, we report the classifica- TN Soso0r
e medin general i sokoor
etor quaniization clasifier (MGLVQ) for “OHS™ ol soon | amesoem
e goodness clssifier CETE
optimized (Bellet etal.. 2012). the K- e s |
) clssifier, and the support vector R W
WaTeer TEhi iR
oo it Biiosr | do0s i
e R Wi | BT
b RITAGE 2021100k | 2e4dinan
el 030w roan | bseioer
ForT)
ey

105, 10] and he regulirizaton srength 5 for G
BEDL in the ange 2. K - (10°°. 10|, We chose the
numberf prototypes for BEDL. i wellas the number of
ncighhors for GESL as the optimal number of prototypes
K for MGLVQ.

implementaions, we wed custom_implemen-
wions _of KNN. MGLVQ. the goodness clasi-
fer, GESL. and BEDL. which are avalabe a
https://dol.org/10.4119/unibi /2519994,
For SVM. we uilzed the LIBSVM sandard imple-
mentation (Chang & Lin, 2011). All experiments were

“We wed 20 fokds for Sengs nd Seatment, 10 for Cysic
and Leukemia, § o Soningand 6 fo Mo, T

performed on a consumer-grade lpiop with an Intel Core
{77700 HQ CPU.
“The resuls of ourexperiments ae displayod in Table 5. In
alldn s ol dsifrs BEDL is o
sification error compired to GESL. For the Sirings data
ke o o vty this vl sl i 2 e
sided Wilcoxon signed ink est (p < 10, Funlermare,
S bt ek 4 s BEDLyichs e v
best classification resuls, and s close 10 optimal for the

e hat cach fod sl contained mesningful nuber ot
points. Forthe Cystic and Leukemia data set. ou ten fods were

Leukemia data set (027 In all cases, BEDL
could improve the accuracy for KNN, in five out of six
ystic duta se). in

conssent with the paper of 2003). Tnall

oeral dta et was maintined

it stayed equal), and in three out of six cases for the good-
ness classifer. For the Strings and Sentiment data ets we.

rthods T kay

... but we did better

55 /55

Literature

THE UNIVERSITY OF

SYDNEY

Literature |

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning.
Berlin/Heidelberg, Germany: Springer. ISBN: 0387310738.

Paalen, Benjamin (2019). Lecture Notes on Applied Optimization. Bielefeld
University. URL: https://pub.uni-bielefeld.de/record/2935200.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning
- From Theory to Agorithims. Cambridge, UK: Cambridge University Press. URL:
https://www.cs.huji.ac.il/"shais/UnderstandingMachineLearning/
understanding-machine-learning-theory-algorithms.pdf.

57 /55

https://pub.uni-bielefeld.de/record/2935200
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

	Basic Mathematical Concepts
	Optimization
	Linear Regression
	Regularization
	Probabilities
	Lessons from Machine Learning Theory
	Crossvalidation and Experimental Design
	Literature
	References

